• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 23
  • 13
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 129
  • 60
  • 37
  • 35
  • 25
  • 23
  • 19
  • 18
  • 18
  • 18
  • 13
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Spectroscopic Characterization of Metallo-𝛽-Lactamase IMP-1 and Bourbon Whiskeys

Zhang, Huan 14 July 2022 (has links)
No description available.
92

Characterization of ImiS, the Metallo-Β-Lactamase from Aeromonas veronii bv. sobria

Crawford, Patrick Anthony 18 November 2003 (has links)
No description available.
93

Characterization of L1, the metallo-Β-lactamase from <i>Stenotrophomonas maltophilia</i>

Garrity, James D. 10 August 2004 (has links)
No description available.
94

KINETIC AND SPECTROSCOPIC STUDIES OF L1, THE METALLO-β-LACTAMASE FROM Stenotrophomonas maltophilia

Zhenxin, Hu 12 August 2008 (has links)
No description available.
95

Identification of an L2 ß-lactamase gene from <i>Stenotrophomonas maltophilia</i> OR02

Doyle, Jamielynn 09 June 2018 (has links)
No description available.
96

SPECTROSCOPIC CHARACTERIZATION OF ZINC HYDROLASES NDM-1 AND MMP-1 FOR DRUG DISCOVERY

yang, hao 27 July 2015 (has links)
No description available.
97

Metallo-β-Lactamase, Phosphotriesterase And Their Functional Mimics

Selvi, A Tamil 07 1900 (has links)
Metallohydrolases with dinuclear-zinc active sites perform many important biological hydrolytic reactions on a variety of substrates. In this regard, metallo-β-lactamases (mβ1, class B) represent a unique subset of zine hydrolases that hydrolyze the β-lactam ring in several antibiotics. The antibiotic resistance that results from this hydrolysis is becoming an increased threat for the clinical community. These metalloenzymes can hydrolyze a wide range of β-lactam substrates, such as cephamycins and imipenem that are generally resistant t the serine-containing β-lactamases. Therefore, the clinical application of the entire range of antibiotics is severely compromised in bacteria that produce mβls. Due to the lack of information on the mechanism of mβls, to-date, no clinically known inhibitors is there for mβls. In this present study, we synthesized several mono and dizinc complexes as models for the mβls and investigated the differences in their hydrolytic properties. This study supports the assumption that the second zinc in the dinuclear enzymes does not directly involve in the catalysis, but may orient the substrates for hydrolysis and the basic amino acid residues such as Asp and His may activate the zinc-bound water molecules, fulfilling the role of the second zinc in the mononuclear enzymes. The effect of various side chains on the hydrolysis of some commonly used cephalosporin antibiotics by mβl from B.cereus is described. It is shown that the cephalosporins having heterocyclic thiol side chains are more resistance to mβl-mediated hydrolysis than the antibiotics that do not have such side chains. This is partly due to the inhibition of enzyme activity by the thiol moieties eliminated during the hydrolysis. It is also observed that the heterocyclic side chains in pure form inhibit the lactamase activity of mβl as well as its synthetic mimics. The mode of binding of these heterocyclic side chains to the zinc has been analyzed from the crystal structure of the tetranuclear zinc complexes. The theoretical studies suggest that the eliminated heterocyclic thiols undergo a rapid tautomerism to produce the corresponding thiones. These thiones are found to irreversibly inhibit the LPO-catalyzed iodination reaction. The reaction of various thiones with I2 leads to the formation of thione-iodine complexes similar to that of the most commonly used antithyroid drug methimazole(MMI). These observations suggest that some of the latest generation of antibiotics may show negative effects on thyroid gland upon hydrolysis. Synthetic organophosphorus compounds have been used extensively as pesticides and petroleum additives. These compounds are very toxic to mammals and their widespread use in agriculture leads to serious environmental problems. Therfore, degradation of organophosphorus trimesters and remediation of associated contaminated sites are of worldwide concern. In this regards, the bacterial phsophotriesterase (PTE) enzyme plays an important role in degrading a wide range of organophosphorus esters and the active side of PTE has been shown to be very similar to that of mβl. This identification prompted us to check the hydrolysis of phosphotriesters by the mβl and its mimics. It has been observed that the dinuclear zine(II) complexes that do not allow a strong binding of phosphodiestes would be a better PTE mimics.
98

Towards in silico prediction of mutations related to antibiotic resistance / Vers la prédiction in silico des mutations liées à la résistance aux antibiotiques

Elisée, Eddy 11 October 2019 (has links)
La résistance aux antibiotiques est une menace sérieuse pour la santé publique. En effet, si on ne change pas rapidement notre consommation excessive d'antibiotiques, la situation actuelle va se dégrader jusqu'à basculer dans une ère dite "post-antibiotique", dans laquelle plus aucun antibiotique ne sera efficace contre les infections microbiennes. Bien que ce phénomène de résistance apparaît naturellement, l'utilisation abusive d'antibiotiques accélère le processus. De plus, la présence de pathogènes multi-résistants neutralise l'effet des traitements existants et dans le cas de chirurgies courantes (césariennes, transplantations d'organe...), la situation peut rapidement s'aggraver voire devenir mortelle. C'est pourquoi des directives, émanant des autorités sanitaires, doivent être mises en place afin de contrôler l'utilisation des médicaments, et ce, à tous les niveaux de la société, des individus au secteur agricole en passant par les professionnels de santé et les industries pharmaceutiques. Le monde de la recherche scientifique, quant à elle, doit trouver des nouvelles stratégies pour enrayer la propagation de la résistance. Dans ce contexte, cette thèse a pour objectif le développement d'une méthode de prédiction, par calculs d'énergie libre, des mutations de β-lactamases favorables à l'hydrolyse des β-lactames. Ces travaux méthodologiques ont donc conduit au développement : (1) de nouveaux paramètres pour les enzymes à zinc, implémentés dans le champ de force OPLS-AA et validés par des simulations de dynamique moléculaire sur un panel de métalloenzymes représentatives, (2) d'un protocole de paramétrisation de ligands covalents pour étudier le comportement de certains β-lactames dans CMY-136, une nouvelle β-lactamase caractérisée au laboratoire, et (3) d'un protocole de calcul d'énergie libre évalué au moyen de compétitions internationales de prédiction. Ce dernier a ensuite été utilisé pour tenter d'expliquer pourquoi la carbamylation de la sérine catalytique n'a pas lieu dans certaines oxacillinases. Au travers de ces travaux, nous avons pu améliorer significativement notre approche computationnelle et désormais tout est en place pour une exploration exhaustive des mutations possibles dans les β-lactamases. / Antibiotic resistance is a global concern threatening worldwide health. Indeed, if we don't change our overconsumption of antibiotics, the current situation could worsen until a "post-antibiotic" era in which existing treatment would be ineffective against microbial infections. Despite the natural occurrence of antibiotic resistance, the misuse of antibiotics is speeding up the process. Furthermore, presence of multi-resistant pathogens negates the effect of modern treatments and usual surgeries (caesarean sections, organ transplantations...) might be riskier in the future, or even lethal. That's why, common guidelines have to be edicted by health authorities in order to control antibiotic use at every level of society, from individuals to healthcare industry including health professionals and agriculture sector. As for scientific research, new strategies have to be considered in order to limit the spread of antibiotic resistance. In that context, the presented thesis aimed at developing a protocol to predict, by free energy calculations, β-lactamase mutations which could promote the hydolysis of β-lactams antibiotics. In order to achieve that, we developed several methodological approaches including: (1) new parameters for zinc enzymes implemented in OPLS-AA force field and thereafter validated using molecular dynamics simulations of representative zinc-containing metalloenzymes, (2) a protocol to parameterize covalent ligands in order to analyze the dynamical behavior of some β-lactams in CMY-136, a novel β-lactamase recently characterized in our laboratory, and (3) a pmx-based free energy protocol. The latter was also assessed through several international blinded prediction challenges, and finally used to find out why carbamylation of the catalytic serine is not observed in certain OXA enzymes. Throughout this work, we made significant improvements in our protocol, and now everything is in place for an exhaustive prediction of possible mutations in β-lactamases.
99

Drug Design of β-Lactamase Inhibitors of the DBO-scaffold against OXA-48 : A Molecular Dynamics Study of Ligand Stability in the Michaelis Complex

Liljeholm, Linda January 2022 (has links)
The emergence of β-lactamase-mediated antibiotic resistance is one of the biggest threats in modern times. Combined with the discovery void of new forms of antibiotics, this sets the course toward a future where the efficacy of present-day health care will be jeopardized. To hinder the spread of β-lactamase-mediated antibiotic resistance, the development of the drug class β-lactamase inhibitors has been prioritized. The foremost candidate for development of this drug class, that has wide-spectrum inhibition of β-lactamases, is the clinically available avibactam of the diazabicyclooctane-scaffold (i.e., DBO-scaffold). However, the clinical applications of this inhibitor have been limited against one of the more rapidly spreading β-lactamases; OXA-48. In order to bolster the drug development of β-lactamase inhibitors of the DBO-scaffold, with good inhibitory activity toward OXA-48, DBO-ligands with different structure elements were analyzed for stability of the Michaelis Complex in the OXA-48 binding site using molecular dynamic simulations. The results indicate that elongation of the chain to the anionic group of the ligand combined with the addition of a methyl group to the DBO-ring was stabilizing for the productive position between the backbone hydrogens of Y211 and S70. The binding affinity was also estimated using the Linear Interaction Energy method, and an offset parameter of γ ≈ -19 kcal/mol was found and could represent the entropic differences of a flexible ligand-protein system. The results of this study may also indicate that the ligand stability of the Michaelis Complex is of minor consequence to the inhibition mechanism as a whole compared to the reaction rate.
100

Rsn-2-mediated directed foam enrichment of β-lactamase

Krause, Thomas, Keshavarzi, Behnam, Dressel, Jannes, Heitkam, Sascha, Ansorge-Schumacher, Marion B. 30 May 2024 (has links)
Today, the availability of methods for the activity-preserving and cost-efficient downstream processing of enzymes forms a major bottleneck to the use of these valuable tools in technical processes. A promising technology appears to be foam fractionation, which utilizes the adsorption of proteins at a gas–liquid interface. However, the employment of surfactants and the dependency of the applicability on individual properties of the target molecules are considerable drawbacks. Here, we demonstrate that a reversible fusion of the large, surface-active protein Ranaspumin-2 (Rsn-2) to a β-lactamase (Bla) enabled both surfactant-free formation of a stable foam and directed enrichment of the enzyme by the foaming. At the same time, Bla maintained 70% of its catalytic activity, which was in stark contrast to the enzyme without fusion to Rsn-2. Rsn-2 predominantly mediated adsorption. Comparable results were obtained after fusion to the structurally more complex penicillin G acylase (PGA) as the target enzyme. The results indicate that using a surface-active protein as a fusion tag might be the clue to the establishment of foam fractionation as a general method for enzyme downstream processing.

Page generated in 0.0583 seconds