• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Assembly of Iron-Sulfur Clusters In Vivo

O'Carroll, Ina Puleri 01 April 2009 (has links)
Iron-sulfur [Fe-S] clusters are protein cofactors that facilitate various life-sustaining biological processes. Their in vivo assembly is accomplished by three different systems known to date. These are: the NIF system which provides [Fe-S] clusters for nitrogenase and other nitrogen-fixing proteins, the SUF system which is induced during conditions of oxidative stress and iron starvation in E. coli, and the ISC system which serves as the housekeeping assembly apparatus. The latter is the focus of this dissertation and includes the proteins IscR, IscS, IscU, IscA, HscB, HscA, Fdx, and IscX. IscU is purified in its cluster-less (apo) form, but can serve as a scaffold to assemble [Fe-S] clusters in vitro in the presence of excess iron and sulfide. To test the scaffold hypothesis and gain insight into the events that occur during [Fe-S] cluster assembly and delivery, we developed two methods that allow the isolation of IscU and other ISC proteins in vivo. In the first method, Azotobacter vinelandii IscU is isolated from its native host, whereas in the second, it is isolated recombinantly from E. coli using a vector that allows expression of the entire isc operon. We found that IscU exists in vivo in two forms: apo-IscU and [2Fe-2S]2+ cluster-loaded IscU which are believed to be conformationally distinct. Both transient and stable IscU-IscS complexes were identified, indicating that the two proteins interact in vivo in a manner that involves their association and dissociation. The [2Fe-2S]2+-IscU species was present as a single entity, whereas significant amounts of apo-IscU were found associated with IscS, suggesting that IscU-IscS dissociation is triggered by the completion of [2Fe-2S] clusters. Both apo and [2Fe-2S]2+-IscU were predominantly monomeric whereas IscU-IscS complexes were determined to have an α2β2 composition. IscU was purified in the absence of the chaperones HscA and HscB and was also shown to accommodate a [2Fe-2S]2+ cluster similar to the one bound to IscU isolated from wild type cells. The findings suggest that [2Fe-2S]2+-IscU exists in one conformation in vivo and that any conformational changes on IscU are exerted after [2Fe-2S] cluster formation. In silico studies showed that a flexible loop containing the conserved LPPVK motif, which is responsible for interactions with HscA, may facilitate cluster exposure to either mediate its delivery to acceptor proteins or participation in the construction of [4Fe-4S] clusters. Experiments with NfuA, a protein similar to the C-terminal domain of NifU, demonstrated that NfuA and similar proteins might serve as [Fe-S] cluster carriers to accomplish the efficient delivery of nascent cofactors to the various recipient proteins. / Ph. D.
2

Caracterização da interação entre a subunidade do R2TP, Nop17, e da proteína de transferência de clusters de Fe/S, Dre2, em Saccharomyces cerevisiae / Characterization of the interaction between the R2TP subunit, Nop17, and the Fe/S cluster transfer protein Dre2 in Saccharomyces cerevisiae

Peralta, Fiorella Guadalupe Orellana 08 December 2017 (has links)
O complexo R2TP está presente em eucariotos, de leveduras a humanos, e está envolvido no correto dobramento de outras proteínas e montagem de complexos multiproteicos. R2TP é formado pelas proteínas Rvb1, Rvb2, Tah1 e Pih1/Nop17 em levedura, e direciona as chaperonas à proteínas alvo durante a montagem dos complexos. Os clusters Fe/S são sintetizados nas mitocôndrias e posteriormente transferidos para o citoplasma. Dre2 é uma proteína que contém cluster Fe/S, e está envolvida na transferência desses clusterspara outras proteínas citoplasmáticas. Nosso laboratório identificou a interação entre a subunidade Nop17 do complexo R2TP e Dre2 pelo método de duplo-híbrido, mas o papel desta interação ainda não foi elucidado. O objetivo deste trabalho foi o de estudar o papel funcional da interação entre Dre2 e Nop17 e identificar seus domínios de interação. Nossos resultados mostram que a porção N-terminal de Nop17 interage com a porção C-terminal de Dre2 e esta interação é necessária para a manutenção dos níveis de Dre2 na célula, indicando que o complexo R2TP atue na montagem do complexo CIA, de proteínas citosólicas Fe/S, do qual Dre2 faz parte. Dre2 também afeta a estabilidade de Nop17, sugerindo que Dre2 possa transferir um clusterFe/S para Nop17. Os dados mostrados aqui, portanto, indicam que a interação Nop17-Dre2 seja mutuamente importante para a estabilidade das duas proteínas / The R2TP protein complex is present in eukaryotes from yeast to humans, and is involved in the correct assembly of other protein or ribonucleoprotein complexes. R2TP is formed by proteins Rvb1, Rvb2, Tah1 and Pih1/Nop17 in yeast, and directs chaperones to target proteins during complexes assembly. Fe/S clusters are synthesized in mitochondria and later transferred to the cytoplasm. Dre2 is a Fe/S cluster protein, involved in transferring of Fe/S clusters to cytoplasmic proteins. Our laboratory has identified the interaction between the R2TP subunit Nop17 and Dre2 in the two-hybrid system. The aim of this work was to study the functional role of the interaction between Dre2 and Nop17, and to identify their domains of interaction. The results show that the N-terminal portion of Nop17 interacts with the C-terminal region of Dre2, and that this interaction is necessary for maintaining the levels of Dre2 in the cell, which suggests that the R2TP complex affects the cytosolic iron-sulfur protein assembly complex (CIA), of which Dre2 is a subunit. Dre2 also affects Nop17 stability, suggesting that Dre2 may transfer a Fe/S cluster to Nop17. The data here indicate that the interaction Nop17-Dre2 is mutually important for these proteins stabilities.
3

Caracterização da interação entre a subunidade do R2TP, Nop17, e da proteína de transferência de clusters de Fe/S, Dre2, em Saccharomyces cerevisiae / Characterization of the interaction between the R2TP subunit, Nop17, and the Fe/S cluster transfer protein Dre2 in Saccharomyces cerevisiae

Fiorella Guadalupe Orellana Peralta 08 December 2017 (has links)
O complexo R2TP está presente em eucariotos, de leveduras a humanos, e está envolvido no correto dobramento de outras proteínas e montagem de complexos multiproteicos. R2TP é formado pelas proteínas Rvb1, Rvb2, Tah1 e Pih1/Nop17 em levedura, e direciona as chaperonas à proteínas alvo durante a montagem dos complexos. Os clusters Fe/S são sintetizados nas mitocôndrias e posteriormente transferidos para o citoplasma. Dre2 é uma proteína que contém cluster Fe/S, e está envolvida na transferência desses clusterspara outras proteínas citoplasmáticas. Nosso laboratório identificou a interação entre a subunidade Nop17 do complexo R2TP e Dre2 pelo método de duplo-híbrido, mas o papel desta interação ainda não foi elucidado. O objetivo deste trabalho foi o de estudar o papel funcional da interação entre Dre2 e Nop17 e identificar seus domínios de interação. Nossos resultados mostram que a porção N-terminal de Nop17 interage com a porção C-terminal de Dre2 e esta interação é necessária para a manutenção dos níveis de Dre2 na célula, indicando que o complexo R2TP atue na montagem do complexo CIA, de proteínas citosólicas Fe/S, do qual Dre2 faz parte. Dre2 também afeta a estabilidade de Nop17, sugerindo que Dre2 possa transferir um clusterFe/S para Nop17. Os dados mostrados aqui, portanto, indicam que a interação Nop17-Dre2 seja mutuamente importante para a estabilidade das duas proteínas / The R2TP protein complex is present in eukaryotes from yeast to humans, and is involved in the correct assembly of other protein or ribonucleoprotein complexes. R2TP is formed by proteins Rvb1, Rvb2, Tah1 and Pih1/Nop17 in yeast, and directs chaperones to target proteins during complexes assembly. Fe/S clusters are synthesized in mitochondria and later transferred to the cytoplasm. Dre2 is a Fe/S cluster protein, involved in transferring of Fe/S clusters to cytoplasmic proteins. Our laboratory has identified the interaction between the R2TP subunit Nop17 and Dre2 in the two-hybrid system. The aim of this work was to study the functional role of the interaction between Dre2 and Nop17, and to identify their domains of interaction. The results show that the N-terminal portion of Nop17 interacts with the C-terminal region of Dre2, and that this interaction is necessary for maintaining the levels of Dre2 in the cell, which suggests that the R2TP complex affects the cytosolic iron-sulfur protein assembly complex (CIA), of which Dre2 is a subunit. Dre2 also affects Nop17 stability, suggesting that Dre2 may transfer a Fe/S cluster to Nop17. The data here indicate that the interaction Nop17-Dre2 is mutually important for these proteins stabilities.
4

Investigations of cellular [2Fe-2S] and [4Fe-4S] cluster biosynthesis and trafficking

Hendricks, Amber Lee January 2021 (has links)
No description available.
5

Étude des protéines NFU, ISCA et FDX, impliquées dans la maturation des centres fer-soufre dans les mitochondries d’Arabidopsis thaliana / Study of NFU, ISCA and FOX proteins involved in FE.S cluster maturation in mitochondria from Arabidopsis thaliana

Przybyla-Toscano, Jonathan 03 February 2017 (has links)
Chez les plantes, les protéines à centre fer-soufre (Fe-S) sont impliquées dans de nombreux processus cellulaires (e.g. photosynthèse, respiration). La maturation de ces protéines nécessite la synthèse de novo des centres Fe-S à l’aide de machineries d’assemblage spécifiques. Les plantes possèdent trois machineries d’assemblage nommées SUF, ISC et CIA, dédiées à la maturation des protéines plastidiales, mitochondriales et nucléaires ou cytosoliques, respectivement. Lors de la maturation des protéines mitochondriales, un centre [2Fe-2S] est initialement assemblé sur la protéine d’échafaudage ISU puis transféré vers les apoprotéines cibles à l’aide de chaperons et de diverses protéines de transfert. Si ces étapes semblent suffisantes pour la maturation de protéines incorporant des centres [2Fe-2S], un couplage réductif de deux centres [2Fe-2S] est nécessaire pour la maturation des protéines de type [4Fe-4S]. Cette conversion nécessite des protéines de transfert et un donneur d’électrons, potentiellement la même ferrédoxine que celle qui agit déjà lors des étapes précoces pour la réduction du soufre. En combinant des approches moléculaires, biochimiques et génétiques, l’implication des protéines de transfert NFU et ISCA et des ferrédoxines mitochondriales (mFDX) dans les étapes tardives de transfert et de conversion a été explorée au cours de cette thèse chez la plante modèle Arabidopsis thaliana. Des expériences de complémentation en levure ont démontré que les protéines NFU et ISCA de plantes peuvent assurer les mêmes fonctions que leurs orthologues respectifs, suggérant que ces étapes tardives ont été conservées. Cependant, contrairement à la levure, l’analyse de lignées n’exprimant pas les deux protéines NFU indiquent qu’elles sont essentielles pour le développement de l’embryon. Au niveau moléculaire, les analyses effectuées à l’aide d’approches in vivo et/ou in vitro ont permis d’identifier une interaction entre ISCA1a ou ISCA1b et ISCA2, NFU4 et NFU5 mais aucune interaction avec les deux mFDX dont le rôle dans les dernières étapes d’assemblage des centres Fe-S reste donc incertain. La formation d’holo-hétérocomplexes entre ISCA1 et ISCA2 a été confirmée par co-expression chez E. coli et purification des protéines recombinantes. Globalement, en associant la littérature à propos de la machinerie ISC et les résultats obtenus, le modèle qui ressort est que des hétérocomplexes ISCA1/2 agiraient immédiatement en amont des protéines NFU qui permettraient a minima la maturation des centres [4Fe-4S] de la lipoate synthase. Ce seul partenaire pourrait expliquer en grande partie la létalité d’un mutant nfu4 x nfu5 car l’activité de plusieurs protéines centrales pour le métabolisme mitochondrial dépend de l’acide lipoïque / In plants, iron-sulfur (Fe-S) proteins are involved in crucial processes such as photosynthesis and respiration. The maturation of these proteins requires the de novo synthesis of their Fe-S clusters through dedicated assembly machineries. Plants have three Fe-S cluster assembly machineries, namely SUF, ISC and CIA, devoted to the maturation of plastidial, mitochondrial and nuclear or cytosolic proteins, respectively. During the mitochondrial Fe-S protein maturation, a [2Fe-2S] cluster is first assembled on the ISU scaffold protein then transferred to target proteins with the help of chaperones and various transfer proteins. If these steps are sufficient for the maturation of [2Fe-2S] proteins, a reductive coupling process of two [2Fe-2S] clusters is required for the maturation of [4Fe-4S] proteins. This conversion needs transfer proteins and an electrons donor, potentially the same ferredoxin which acts during the first step of the Fe-S cluster biogenesis for sulfur reduction. By combining molecular, biochemical and genetic approaches, the involvement of NFU and ISCA transfer protein and mitochondrial ferredoxin (mFDX) in the late transfer and conversion steps has been explored during this PhD project by using the Arabidopsis thaliana plant model. Yeast complementation experiments have demonstrated that plant NFU and ISCA proteins have functions similar to their respective orthologs, suggesting that these late steps are conserved. However, unlike yeast, the characterization of nfu mutant lines indicates that both proteins are essential for early embryonic development. At the molecular level, in vivo and in vitro approaches have shown an interaction between ISCA1a or ISCA1b and ISCA2, NFU4 and NFU5 but no interaction with the two mFDX whose participation in the late steps remains uncertain. The formation of ISCA1-ISCA2 holo-heterocomplexes has been confirmed by co-expression in E. coli and purification of recombinant proteins. Overall, the literature and results obtained here highlight a model where ISCA1/2 heterocomplexes would act immediately downstream of NFU proteins which would a minima allow [4Fe-4S] cluster maturation of the lipoate synthase. This sole partner could primarily explain the lethality of a nfu4 x nfu5 double mutant because the activity of several proteins central for the mitochondrial metabolism depends on lipoic acid
6

Etude du rôle de la frataxine bactérienne CyaY chez Escherichia coli / Study of bacterial frataxin CyaY in Escherichia coli

Roche, Béatrice 01 December 2015 (has links)
Les protéines à centre Fe-S sont impliquées dans de nombreux processus cellulaires. In vivo, la formation des centres Fe-S est réalisée par des machineries multi-protéiques dont ISC et SUF, conservées chez les eucaryotes et les procaryotes. D’autres composants participent à la formation des centres Fe-S chez les eucaryotes, comme la frataxine (FXN). La FXN est une protéine présente chez l’homme, les plantes, la levure ou encore les bactéries à Gram négatif. Chez les eucaryotes, l’absence de FXN conduit à des phénotypes drastiques comme une accumulation de fer dans la mitochondrie, une diminution drastique de l’activité d’enzymes à centre Fe-S ou encore des dommages oxydatifs. Chez l’homme, un déficit en FXN est responsable d’une maladie neurodégénérative, l’ataxie de Friedreich. A la différence des eucaryotes, chez les procaryotes comme Escherichia coli, l’absence de CyaY, homologue bactérien de la FXN, ne conduit à aucun des phénotypes évoqués ci-dessus.Durant ma thèse, je me suis intéressée au rôle de CyaY chez E. coli. J’ai montré que, in vivo, CyaY favorise la formation des centres Fe-S via la machinerie ISC. Un lien génétique entre CyaY et IscX a également pu être établi, montrant que ces deux protéines participent à la formation des centres Fe-S in vivo. Je me suis ensuite intéressée aux bases moléculaires pouvant expliquer la différence entre les phénotypes liés à l’absence de FXN chez les eucaryotes et les procaryotes. J’ai montré que le résidu 108 de IscU joue un rôle clé pour la dépendance de CyaY. Enfin, pour mieux comprendre le rôle de CyaY chez E. coli, j’ai réalisé une approche globale en caractérisant le transcriptome du mutant ∆cyaY. / Fe-S cluster containing proteins are involved in many cellular processes such as respiration, DNA repair or gene regulation. In vivo, Fe-S cluster biogenesis is catalysed by specific protein machineries, ISC and SUF, conserved in both eukaryotes and prokaryotes. Frataxin (FXN) is a small protein found in humans, plants, yeast and Gram negative bacteria. In eukaryotes, a defect in FXN leads to drastic phenotypes such as mitochondrial iron accumulation, drastic decrease of Fe-S cluster protein activity, sensitivity to oxidants. In humans, FXN deficiency is responsible for the neurodegenerative disease, Friedreich’s ataxia. In prokaryotes like E. coli, a defect in CyaY, the bacterial FXN homolog, does not lead to significant phenotypes compared to the wild-type strain. During my thesis, I investigated the role of the bacterial FXN CyaY in E. coli. I showed that, in vivo, CyaY assisted the ISC-catalyzed Fe-S cluster biogenesis. A genetic link was also observed between cyaY and iscX, demonstrating that these proteins participate in Fe-S cluster biogenesis. In a second part, I investigated the differences between the impact of the eukaryotic versus prokaryotic FXN. I showed that the IscU 108th residue is crucial for the CyaY-dependency. Finally, I used a transcriptomic approach to test whether CyaY has a global role in E. coli.
7

Uncovering the Role of Mitochondrial Iron-sulfur (Fe-S) Cluster Biogenesis in Human Health and Disease

Saha, Prasenjit Prasad January 2015 (has links) (PDF)
Mitochondrial dysfunction has been implicated for a wide range of human diseases. One of the major biosynthetic processes in human mitochondria is the biogenesis of Iron-Sulfur (Fe-S) clusters which primarily involves in electron transfer reactions during oxidative phosphorylation (OXPHOS). Defects in Fe-S cluster biogenesis process leads to mitochondrial dysfunction and that eventually results in various human mitochondrial disorders. One of the major mitochondrial disorders associated with Fe-S cluster biogenesis impairment is exercise intolerance disorder ISCU myopathy, which is a result of loss of function of Fe-S cluster scaffold protein ISCU. Our biochemical results using yeast model system and HeLa cells lines suggests that ISCU Myopathy results in defective Fe-S cluster biogenesis in mitochondrial compartment. As a result, electron transport chain (ETC) complexes demonstrate significant reduction in their redox properties, leading to loss of cellular respiration. Furthermore, in ISCU Myopathy, mitochondria display enhancement in iron levels and reactive oxygen species, thereby causing oxidative stress leading to impairment in the mitochondrial functions. On the other hand, in mammalian mitochondria, the initial step of Fe-S cluster assembly process is assisted by NFS1-ISD11 complex, which delivers sulfur to the scaffold protein ISCU during Fe-S cluster synthesis. In humans, loss of ISD11 function leads to development of respiratory distress disorder, Combined Oxidative Phosphorylation Deficiency 19 (COXPD19). Our study maps the important ISD11 amino acid residues critical for in vivo Fe-S cluster biogenesis. Importantly, mutation of these critical ISD11 residues to alanine leads to its compromised interaction with NFS1, which results in reduced stability and enhanced aggregation of NFS1 in the mitochondria. Moreover, our findings highlight that, COXPD19 associated R68L ISD11 mutant displays reduced affinity to form a stable sub-complex with NFS1, thereby fails to prevent NFS1 aggregation, resulting impairment of Fe-S cluster biogenesis. The prime affected machinery is the ETC complex which demonstrates compromised redox properties, causing diminished mitochondrial respiration in COXPD19 patients. In summary, our findings provide compelling evidence that respiration defect due to impaired biogenesis of Fe-S clusters in ISCU myopathy patients, leads to manifestation of complex clinical symptoms. Additionally, our study highlights the role of ISD11 protein in Fe-S cluster biogenesis and maps the surface residues of ISD11 protein that are involved in interaction with sulfur donor protein NFS1. Moreover, we have demonstrated the molecular basis of disease progression of COXPD19 as a result of R68L ISD11 mutation.

Page generated in 0.0816 seconds