• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 352
  • 137
  • 71
  • 63
  • 45
  • 19
  • 18
  • 11
  • 11
  • 10
  • 6
  • 5
  • 5
  • 5
  • 2
  • Tagged with
  • 897
  • 141
  • 114
  • 70
  • 69
  • 66
  • 60
  • 56
  • 55
  • 51
  • 49
  • 48
  • 48
  • 47
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

A Study of the Axial Crush Response of Hydroformed Aluminum Alloy Tubes

Williams, Bruce W. January 2007 (has links)
There exists considerable motivation to reduce vehicle weight through the adoption of lightweight materials, such as aluminum alloys, while maintaining energy absorption and component integrity under crash conditions. To this end, it is of particular interest to study the crash behaviour of lightweight tubular hydroformed structures to determine how the forming behaviour affects the axial crush response. Thus, the current research has studied the dynamic crush response of both non-hydroformed and hydroformed EN-AW 5018 and AA5754 aluminum alloy tubes using both experimental and numerical methods. Experiments were performed in which hydroforming process parameters were varied in a parametric fashion after which the crash response was measured. Experimental parameters included the tube thickness and the hydroformed corner radii of the tubes. Explicit dynamic finite element simulations of the hydroforming and crash events were carried out with particular attention to the transfer of forming history from the hydroforming simulations to the crash models. The results showed that increases in the strength of the material due to work hardening during hydroforming were beneficial in increasing energy absorption during crash. However, it was shown that thinning in the corners of the tube during hydroforming decreased the energy absorption capabilities during axial crush. Residual stresses resulting from hydroforming had little effect on the energy absorption characteristics during axial crush. The current research has shown that, in addition to capturing the forming history in the crash models, it is also important to account for effects of material non-linearity such as kinematic hardening, anisotropy, and strain-rate effects in the finite element models. A model combining a non-linear kinematic hardening model, the Johnson-Cook rate sensitive model, and the Yld2000-2d anisotropic model was developed and implemented in the finite element simulations. This combined model did not account for the effect of rotational hardening (plastic spin) due to plastic deformation. It is recommended that a combined constitutive model, such as the one described in this research, be utilized for the finite element study of materials that show sensitivity to the Bauschinger effect, strain-rate effects, and anisotropy.
352

Generic Simulation Model Development of Hydraulic Axial Piston Machines

Kayani, Omer Khaleeq, Sohaib, Muhammad January 2012 (has links)
This master thesis presents a novel methodology for the  development of simulation models  for hydraulic pumps and motors. In this work, a generic simulation model capable of representing multiple axial piston machines is presented, implemented and validated. Validation of the developed generic simulation model is done by comparing the results from the simulation model with experimental measurements. The development of the generic model is done using AMESim. Today simulation models are an integral part of any development process concerning hydraulic machines. An improved methodology for developing these simulation models will affect both the development cost and time in a positive manner. Traditionally, specific simulation models dedicated to a certain pump or motor are created. This implies that a complete rethinking of the model structure has to be done when modeling a new pump or motor. Therefore when dealing with a large number of pumps and motors, this traditional way of model development could lead to large development time and cost. This thesis work presents a unique way of simulation model development where a single model could represent multiple pumps and motors resulting in lower development time and cost. An automated routine for simulation model creation is developed and implemented. This routine uses the generic simulation model as a template to automatically create simulation models requested by the user. For this purpose a user interface has been created through the use of Visual Basic scripting. This interface communicates with the generic simulation model allowing the user to either change it parametrically or completely transform it into another pump or motor. To determine the level of accuracy offered by the generic simulation model, simulation results are compared with experimental data. Moreover, an optimization routine to automatically fine tune the simulation model is also presented.
353

A Study of the Axial Crush Response of Hydroformed Aluminum Alloy Tubes

Williams, Bruce W. January 2007 (has links)
There exists considerable motivation to reduce vehicle weight through the adoption of lightweight materials, such as aluminum alloys, while maintaining energy absorption and component integrity under crash conditions. To this end, it is of particular interest to study the crash behaviour of lightweight tubular hydroformed structures to determine how the forming behaviour affects the axial crush response. Thus, the current research has studied the dynamic crush response of both non-hydroformed and hydroformed EN-AW 5018 and AA5754 aluminum alloy tubes using both experimental and numerical methods. Experiments were performed in which hydroforming process parameters were varied in a parametric fashion after which the crash response was measured. Experimental parameters included the tube thickness and the hydroformed corner radii of the tubes. Explicit dynamic finite element simulations of the hydroforming and crash events were carried out with particular attention to the transfer of forming history from the hydroforming simulations to the crash models. The results showed that increases in the strength of the material due to work hardening during hydroforming were beneficial in increasing energy absorption during crash. However, it was shown that thinning in the corners of the tube during hydroforming decreased the energy absorption capabilities during axial crush. Residual stresses resulting from hydroforming had little effect on the energy absorption characteristics during axial crush. The current research has shown that, in addition to capturing the forming history in the crash models, it is also important to account for effects of material non-linearity such as kinematic hardening, anisotropy, and strain-rate effects in the finite element models. A model combining a non-linear kinematic hardening model, the Johnson-Cook rate sensitive model, and the Yld2000-2d anisotropic model was developed and implemented in the finite element simulations. This combined model did not account for the effect of rotational hardening (plastic spin) due to plastic deformation. It is recommended that a combined constitutive model, such as the one described in this research, be utilized for the finite element study of materials that show sensitivity to the Bauschinger effect, strain-rate effects, and anisotropy.
354

Condition monitoring of axial piston pump

Li, Zeliang Eric 30 November 2005 (has links)
<p>Condition Monitoring is an area that has seen substantial growth in the last few decades. The purpose for implementing condition monitoring in industry is to increase productivity, decrease maintenance costs and increase safety. Therefore, condition monitoring can be used not only for planning maintenance but also for allowing the selection of the most efficient equipment to minimize operating costs. </p><p>Hydraulic systems are widely used in industry, aerospace and agriculture and are becoming more complex in construction and in function. Reliability of the systems must be supported by an efficient maintenance scheme. Due to component wear or failure, some system parameters may change causing abnormal behaviour in each component or in the overall circuit. Research in this area has been substantial, and includes specialized studies on artificial fault simulation at the University of Saskatchewan. In this research, an axial pump was the focus of the study. In an axial piston pump, wear between the various faces of components can occur in many parts of the unit. As a consequence, leakage can occur in locations such as between the valve plate and barrel, the drive shaft and oil wiper, the control piston and piston guide, and the swash plate and slippers. In this study, wear (and hence leakage) between the pistons and cylinder bores in the barrel was of interest. Researchers at the University of Saskatchewan, as well as at other research institutions, have been involved in studies to detect wear in pumps using a variety of condition monitoring algorithms. However, to verify the reliability and indeed, limitations of some of the approaches, it is necessary to test the algorithms on systems with real leakage. To introduce actual wear in the piston of pumps can be very difficult and very expensive. Hence, introducing piston wear in an artificial manner would be of great benefit in the evaluation of various condition monitoring techniques.</p><p>Since leakage is a direct consequence of piston wear, it is logical to conclude that varying the leakage in some prescribed manner can be used to artificially simulate wear. A prime concern, therefore, is to be able to precisely understand the dynamic relationships between the wear and leakage and the effect it has on the output flow or pressure waveform from the pump.</p><p>Introducing an artificial leakage to simulate the wear of pistons is a complex task. The creation of an artificial leakage path was not simply a process of providing a resistive short to the tank at the outlet of the pump port as was done in other studies. The objective was to create a leakage environment that would simulate leakage from a single piston (or combination of several pistons thereof). The complexity of the flow and pressure ripple waveforms (which various condition monitoring algorithms did require) was such that a more comprehensive leakage behaviour had to be modeled and experimentally created. A pressure control servo valve with a very high frequency response was employed to divert the flow from the pump outlet with a prescribed waveform directly to the tank to simulate the piston leakage from the high pressure discharge chamber to the pump case drain chamber as the simulated worn piston made contact with the high pressure chamber. The control algorithm could mimic the action of a single worn piston at various degrees of wear. The experimental results indicated that the experimental system could successfully introduce artificial leakage into the pump which was quite consistent with a unit with a real worn piston. Comparisons of the pressure ripples from an actual faulty pump (worn piston) and the artificial faulty pump (artificial leakage) are presented.</p>
355

The influence of vertical reinforcement and lateral confinement on the axial capacity of masonry block walls

Paturova, Anna 28 March 2006 (has links)
Concrete masonry is a multi-component structural system. In the case of reinforced concrete masonry, the system includes the concrete units, the mortar, the reinforcing steel and the grout fill. Placing vertical steel reinforcing bars in the cores of the concrete units enhances the flexural strength of the wall. The vertical steel, when subjected to compression at moderate strain levels, must be confined to improve its resistance to buckling and to improve the effectiveness of the grout around the reinforcing bar. Based on the well established behaviour of reinforced concrete systems, it seems reasonable to presume that the primary means of enhancing ductility is to provide lateral confining steel at closely-spaced intervals to effectively increase the ultimate compressive strain in the grout. It may be assumed that transverse reinforcement in concrete masonry provides lateral confinement to the core so that the axial compressive strength of the grout is enhanced and the ductility improved. <p>The focus of this study was to investigate the effect of vertical reinforcement and lateral confinement on the axial capacity of short partially grouted concrete masonry walls built in running bond. In order to better understand the structural behaviour of both confined and unconfined concrete masonry, it is important to have some knowledge of the load-displacement behaviour, stress-strain behaviour and failure modes of the masonry walls with different configurations of vertical and lateral reinforcement. <p>An experimental study was performed to investigate the behaviour of partially grouted concrete masonry block walls under axial loading. Three types of test specimens of partially grouted concrete block masonry walls were tested: <p>(1) specimens with a grouted core only; <p>(2) specimens with a grouted core and vertical reinforcement (i.e. no confinement); and <p>(3) specimens with a grouted core, vertical reinforcement and spiral confinement in the grouted cores. In total, thirty short wall specimens were tested to failure. <p>The structural behaviour of vertically reinforced, laterally confined walls was compared to vertically reinforced, unconfined walls, as well as to unreinforced, unconfined masonry walls. The test results indicated that vertical reinforcement of the grouted core did not have a significant positive effect on the failure modes and strength of the short masonry walls. Due to problems with adequate compaction, the lateral confinement provided by the spiral reinforcement had a slightly negative effect on the compressive strength of concrete masonry walls built in running bond. Vertical reinforcement and lateral confinement of the grouted core had some positive effect on the ductility. From a comparison of the ductility for all three types of specimens it was found that both the vertical reinforcement and lateral confinement of the core had a beneficial influence on the post-peak ductility. <p>In general, similar crack patterns and failure modes were observed in all three types of specimens. Vertical cracks that progressed through the end faces of the concrete blocks and mortar joints, suggesting that the lateral expansion of the grouted core contributed to tensile splitting stresses in walls. All walls failed in a compression-tension stress state, which featured spalling away of the block shells and vertical tensile splitting on the end faces.
356

Design and Characterisation of A SynchronousCo-Axuak Double Magnetron Sputtering System

Aijaz, Asim January 2009 (has links)
High power impulse magnetron sputtering (HiPIMS) is a novel pulsed power technique. In HiPIMS, high power pulses are applied to the target for short duration with a low duty factor. It provides a high degree of ionization of the sputtered material (in some cases up to 90%) and a high plasma density (1019 m-3) which results in densification of the grown films. Recently a large side-transport of the sputtered material has been discovered, meaning that the sputtered material is transported radially outwards, parallel to the cathode surface. In this research, we use this effect and study the side-ways deposition of thin films. We designed a new magnetron sputtering system, consisting of two opposing magnetrons with similar polarity. Ti films were grown on Si using the side-ways transport of the sputtered material. Scanning electron microscope was employed to investigate the microstructure of the grown films. Optical emission spectroscopy (OES) measurements were made for investigating the ionized fraction of the sputtered material while Langmuir probe measurements were made for evaluating the plasma parameters such as electron density. The conclusion is that the system works well for side-ways deposition and it can be useful for coating the interior of cylindrically shaped objects. It is a promising technique that should be used in industry.
357

Controlled Radical Polymerizations in Miniemulsions: Advances in the Use of RAFT

Russum, James 03 November 2005 (has links)
The goal of this work is to increase the current understanding of Controlled Radical Polymerizations (CRPs) in two areas. Progressing closer towards employing an aqueous system, specifically miniemulsion, to produce poly(vinyl acetate) via reversible addition fragmentation chain transfer (RAFT) chemistry constitutes the first part of this goal. Presented are the results of miniemulsion polymerizations using both water and oil-soluble initiators. Limiting conversions in both are examined and explained in terms of radical loss. The second part of the goal is to further the understanding of the nature of the RAFT/miniemulsion system when employed in continuous tubular reactors. The development of the recipe using mixed surfactants, the results of styrene homopolymerizations in batch and tube, and the results of a chain extension experiment demonstrating the living nature of the chains formed in the tubular reactor are presented. Kinetic anomalies are addressed, as well as polydispersity (PDI) differences between batch and tube. Flow phenomenon and their influence on residence time distribution and by implication the polydispersity of the polymer formed are offered as explanations for the variance in PDI and are subsequently quantified. A model of RAFT in laminar flow is presented and the results and implications are discussed in general terms. The flow profile of the reactor is examined using a tracer technique developed specifically for this system. Experiments are presented directly relating the residence time distribution to the polydispersity of the polymer. Transient behavior of the reactor in isolated plug flow is explained in terms of initiator loss. Both experimental data and a model are used to support this hypothesis. Finally, conclusions and implications are presented and unanswered questions and the ideas for future work that they generated are addressed.
358

Analytical Solution For Single Phase Microtube Heat Transfer Including Axial Conduction And Viscous Dissipation

Barisik, Murat 01 July 2008 (has links) (PDF)
Heat transfer of two-dimensional, hydrodynamically developed, thermally developing, single phase, laminar flow inside a microtube is studied analytically with constant wall temperature thermal boundary condition. The flow is assumed to be incompressible and thermo-physical properties of the fluid are assumed to be constant. Viscous dissipation and the axial conduction are included in the analysis. Rarefaction effect is imposed to the problem via velocity slip and temperature jump boundary conditions for the slip flow regime. The temperature distribution is determined by solving the energy equation together with the fully developed velocity profile. Analytical solutions are obtained for the temperature distribution and local and fully developed Nusselt number in terms of dimensionless parameters / Peclet number, Knudsen number, Brinkman number, and the parameter &amp / #954 / . The results are verified with the well-known ones from literature.
359

Eta-eta Prime Mixing In Chiral Perturbation Theory

Kokulu, Ahmet 01 September 2008 (has links) (PDF)
Quantum Chromodynamics (QCD) is believed to be the theory of strong interactions. At high energies, it has been successfully applied to explain the interactions in accelerators. At these energies, the method used to do the calculations is perturbation theory. But at low energies, since the strong coupling constant becomes large, perturbation theory is no longer applicable. Hence, one needs non-perturbative approaches. Some of these approaches are based on the fundamental QCD Lagrangian, such as the QCD sum rules or lattice calculations. Some others use an effective theory approach to relate experimental observables one to the other. Chiral Perturbation Theory (ChPT) is one of these approaches. In this thesis, we make a review of chiral perturbation theory and its applications to study the mixing phenomenon between the neutral pseudoscalar mesons eta and eta-prime.
360

Experimental evaluation of wire mesh for design as a bearing damper

Choudhry, Vivek Vaibhav 15 November 2004 (has links)
Wire mesh vibration dampers have been the subject of some very encouraging experiments at the Texas A&M Turbomachinery laboratories for the past several years and have emerged as an excellent replacement for squeeze film dampers. Their capability to provide damping for a wide range of temperatures (even cryogenic), fluid free operation and ability to perform even when soaked with lubricants makes them a suitable option as a bearing damper. Experiments were conducted to investigate the effect of design parameters like axial thickness and axial compression that influence the characteristics of wire mesh as a bearing damper. Two groups of wire mesh were tested to show that the stiffness and damping are directly proportional to the axial thickness, if all the other parameters are kept constant. Tests on four wire mesh donuts of different radial thickness showed that stiffness and damping vary inversely with radial thickness. Rigorous tests were also conducted to quantify the effects of axial compression, radial interference and displacement amplitude on stiffness and damping of the wire mesh. Another novel kind of mesh damper tested was comprised of two small segments instead of a whole donut. The results showed that wire mesh exhibited good damping characteristics even when used in small segments. Empirical expressions were developed using MathCADTM worksheets, and an existing ExcelTM design worksheet was modified to include these factors. The effect of frequency variation was also included to give a comprehensive design tool for wire mesh. A new design worksheet was developed that can predict rotordynamic coefficients for a wire mesh bearing damper having a different size as well as different installation and operational conditions.

Page generated in 0.027 seconds