• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 309
  • 50
  • 39
  • 33
  • 23
  • 16
  • 16
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 616
  • 616
  • 223
  • 221
  • 207
  • 94
  • 92
  • 71
  • 53
  • 46
  • 42
  • 41
  • 40
  • 39
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

The development of smart reactors for flow chemistry : the role of additive manufacturing and online analysis for automated optimisation

Harding, Matthew J. January 2017 (has links)
This thesis investigates the application of online monitoring for the optimisation of flow chemistry, as well as how additive manufacturing can aid the integration of analysis and confer new functionality to flow reactors. The additive manufacturing (AM) processes used were stereolithography (SL) and the metal printing techniques selective laser melting (SLM) and ultrasonic consolidation (UC). Chapter 1 contains a short literature review, intended to give a clear background to the work contained herein. The literature reported gives a brief introduction to flow chemistry and some of the instrumentation used to perform it. Additionally, the evolution of reactor design is investigated leading to an overview of the use of AM for custom reactors. The subsequent use of online analytical technologies and how they relate to the enhancement of flow chemistry is discussed, as well as some of the protocols that have been employed to date to facilitate automated reaction optimisation. Chapter 2 investigates the design and manufacture of flow cells capable of online spectroscopy, as well as the integration of spectroscopic monitoring capability directly into reactors. In addition, the use of AM to produce accessories, not necessarily part of the wetted flow path, was investigated and showed that many useful parts such as fibre optic holders and screws could be produced. The capability of these flow cells was assessed through standard material analysis as well as through the online analysis of flow chemistry. In particular, the use of SL has enabled the production of flow cells with features smaller than 100 microns. This allowed in situ spectroscopy to be performed by embedding fibre optics directly adjacent to the flow channel, offering a new way for reaction monitoring by ultraviolet (UV) spectroscopy to be performed cheaply, and with full user control over the flow cell specification. No additional quartz features were required for these cheap and highly customisable parts. Flow cells of larger path lengths were also produced, and their performance tested, identifying designs and materials suitable for the inline analysis of flow chemistry. These designs were then successfully incorporated directly within the flow channels of larger scale reactors, tailored specifically to commercial flow equipment, for true inline analysis of flow chemistry. Chapter 3 examines the use of metal reactors formed through more expensive printing processes, SLM and UC. As the parts these techniques produce are fully dense, chemically resistant and thermally stable, they were used to perform high temperature chemistry, taking solvents substantially above their boiling points to accelerate reactions and perform them in a fraction of the time of the batch process. UC was also used to produce a reactor with a copper flow path and the possibility of reaction catalysis performed with active metal sections was investigated, revealing that chemical modification of the reactor surface greatly improved the reaction yield. UC was also utilised to produce a flow reactor incorporating a thermocouple in the main body, close to the flow channel to enable accurate reaction temperatures to be measured, a significant improvement over the temperature control offered through the flow instrument. This represents the first use of UC for the production of complicated geometry flow reactors and this work has shown that many more applications of the technique for flow chemistry should be investigated. The ability to perform light mediated coupling reactions in AM produced reactors was also demonstrated successfully for the first time, and further to this that the extended UV curing of SL reactors is crucial for improved robustness of these parts. Chapter 4 centres on the use of online analytical methods to provide rapid, selective, and quantitative online analysis of flow chemistry. This chapter also outlines some of the steps required for automation to be possible, including equipment specifications and the coding approach undertaken to integrate multiple different instruments. A combination of online nuclear magnetic resonance (NMR) spectroscopy analysis and automated experiment selection was then used to optimise a pharmaceutically relevant, photoredox catalysed, C-N coupling reaction between amines and aryl halides, performed under continuous flow conditions for the first time. This optimisation required minimal user input, operating completely unattended, and revealed that lower concentrations of catalyst could be employed than previously identified, reducing the amount of toxic and expensive metal salts required, while achieving high conversion of the starting material. In summary, this thesis has demonstrated that AM, in particular SL, can be used for the production of new high resolution microfluidic flow cells, as well as larger scale flow cell designs which can be integrated into the body of large reactors, not easily performed with other manufacturing methods. SL has also been used to produce reactors capable of performing light catalysed reactions directly, with no further modifications. The use of metal printing AM techniques has allowed in situ catalysis and high temperature, high pressure reactions to be carried out with ease. Finally, the use of online NMR with computer control and experiment automation has allowed the rapid optimisation of a pharmaceutically important C-N coupling reaction.
52

Vascular network formation via 3D printing and cell-based approaches

Justin, Alexander William January 2018 (has links)
Vascularization is essential for living tissue and remains a major challenge in the field of tissue engineering. A lack of a perfusable channel network within a large and densely populated tissue engineered construct leads to necrotic core formation, preventing fabrication of functional tissues and organs. While many approaches have been reported for forming vascular networks, including materials processing techniques, such those involving lithography, bioprinting, and sacrificial templating; and cell-based approaches, in which cellular self-organization processes form vessels; all are deficient in their ability to form a vessel system of sufficient complexity for supporting a large cellular construct. What is missing from the literature is a method for forming a fully three-dimensional vascular network over the full range of length-scales found in native vessel systems, which can be used alongside cells and perfused with fluids to support their function. A large number of research groups are thus pursuing novel methods for fabricating vascular systems in order that new tissues and organs can be fabricated in the lab. In this project, a 3D printing-based approach was used to form vascular networks which are hierarchical, three-dimensional, and perfusable. This was performed in thick, cellularized hydrogels similar in composition to native tissue; these being collagen (ECM-like) and fibrin (woundlike), both of which are highly capable of supporting cellular activities, such as cell seeding, cell spreading, and capillary morphogenesis. In order to make use of 3D printed network templates in cellularized hydrogel environments, it was necessary to develop a new approach in which standard 3D printed materials were converted into a gelatin template, via an alginate intermediary, which can be removed quickly in physiologic conditions and which does not reduce cell viability. This multi-casting approach enables a hierarchical channel network to be formed in three-dimensions, capable of being perfused with cell medium to maintain the viability of a cell population, thereby addressing the fundamental problem. Using standard cell staining and immuno-histochemistry techniques, we showed good endothelial cell seeding and the presence of tight junctions between the channel endothelial cells. When fibroblasts were seeded into the bulk of the hydrogel, a high degree of cell viability and cell spreading was observed when a threshold flow rate is met. By counting the number of live and dead cells in a sample regions of the gel, we were able to show a dependency of cell viability upon the perfusion flow rate and further determine a regime in which the vast majority of cells are alive and spreading. This data informs future cellular experiments using this platform technology. The limits of existing 3D printing technology meant that the micro-scale vasculature needed to be formed by other means. Cellular co-culture of endothelial and stromal cell types has been shown to be capable of forming capillary-like structures in vitro. For inclusion with the 3D printed channel system, we investigated the use of an angiogenic method for capillary formation, using multi-cellular spheroids, and a vasculogenic approach, using individual cells, in order that the full vascular system could be constructed. Endothelial and mesenchymal stromal cells were encapsulated in small fibrin and collagen gels and maintained under static culture conditions in order to form capillaries by the above approaches. The aim here was to find a particular gel composition and cell concentration which would support capillary morphogenesis while being suitably robust to handle the mechanical stresses associated with perfusion. As future work, the next step will be to incorporate the vasculogenic co-culture technique, used to form capillary-sized vessels, into a perfusable gel containing the large templated channels, formed via the multi-casting approach. The challenge here is to anastomose the capillary-sized vessels to the large templated channels and thereby enable perfusion of the capillary vessels. This step would be a highly significant development in the field as it would mean large constructs could be fabricated with physiological densities of cells, which could lead to a range of potential therapeutic applications.
53

Utilization of Thermoplastic Mounting Studs for Simple Performance Testing on Hot Mix Asphalt

January 2018 (has links)
abstract: The objective of the research is to test the use of 3D printed thermoplastic to produce fixtures which affix instrumentation to asphalt concrete samples used for Simple Performance Testing (SPT). The testing is done as part of materials characterization to obtain properties that will help in future pavement designs. Currently, these fixtures (mounting studs) are made of expensive brass and cumbersome to clean with or without chemicals. Three types of thermoplastics were utilized to assess the effect of temperature and applied stress on the performance of the 3D printed studs. Asphalt concrete samples fitted with thermoplastic studs were tested according to AASHTO & ASTM standards. The thermoplastics tested are: Polylactic acid (PLA), the most common 3D printing material; Acrylonitrile Butadiene Styrene (ABS), a typical 3D printing material which is less rigid than PLA and has a higher melting temperature; Polycarbonate (PC), a strong, high temperature 3D printing material. A high traffic volume Marshal mix design from the City of Phoenix was obtained and adapted to a Superpave mix design methodology. The mix design is dense-graded with nominal maximum aggregate size of ¾” inch and a PG 70-10 binder. Samples were fabricated and the following tests were performed: Dynamic Modulus |E*| conducted at five temperatures and six frequencies; Flow Number conducted at a high temperature of 50°C, and axial cyclic fatigue test at a moderate temperature of 18°C. The results from SPT for each 3D printed material were compared to results using brass mounting studs. Validation or rejection of the concept was determined from statistical analysis on the mean and variance of collected SPT test data. The concept of using 3D printed thermoplastic for mounting stud fabrication is a promising option; however, the concept should be verified with more extensive research using a variety of asphalt mixes and operators to ensure no bias in the repeatability and reproducibility of test results. The Polycarbonate (PC) had a stronger layer bonding than ABS and PLA while printing. It was recommended for follow up studies. / Dissertation/Thesis / Masters Thesis Civil, Environmental and Sustainable Engineering 2018
54

3D Printed Heat Exchangers: An Experimental Study

January 2018 (has links)
abstract: As additive manufacturing grows as a cost-effective method of manufacturing, lighter, stronger and more efficient designs emerge. Heat exchangers are one of the most critical thermal devices in the thermal industry. Additive manufacturing brings us a design freedom no other manufacturing technology offers. Advancements in 3D printing lets us reimagine and optimize the performance of the heat exchangers with an incredible design flexibility previously unexplored due to manufacturing constraints. In this research, the additive manufacturing technology and the heat exchanger design are explored to find a unique solution to improve the efficiency of heat exchangers. This includes creating a Triply Periodic Minimal Surface (TPMS) geometry, Schwarz-D in this case, using Mathematica with a flexibility to control the cell size of the models generated. This model is then encased in a closed cubical surface with manifolds for fluid inlets and outlets before 3D printed using the polymer nylon for thermal evaluation. In the extent of this study, the heat exchanger developed is experimentally evaluated. The data obtained are used to derive a relationship between the heat transfer effectiveness and the Number of Transfer Units (NTU).The pressure loss across a fluid channel of the Schwarz D geometry is also studied. The data presented in this study are part of initial experimental evaluation of 3D printed TPMS heat exchangers.Among heat exchangers with similar performance, the Schwarz D geometry is 32% smaller compared to a shell-and-tube heat exchanger. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2018
55

Hybrid heritage : an investigation into the viability of 3D-printed Mashrabiya window screens for Bahraini dwellings

Almerbati, Nehal January 2016 (has links)
Current debates on design and manufacturing support the claim that the ‘Third Industrial Revolution’ has already started due to Additive Manufacturing (AM) and 3D Printing. The process of solidifying liquid or powder using a binding agent or a melting laser can save time and transportation costs associated with importing primary material if locally sourced material is available. This research investigates a framework approach, titled SAFE, for discussing the functionality, economic viability, production feasibility, and aesthetic and cultural value lent by 3D printing on an architectural scale through a construction known as a Mashrabiya. This traditional window screen has distinguished aesthetic, cultural yet functional constraints, and there is a manufacturing gap in the market that makes it a viable product option to be 3D printed. The practical element and design process related to reviving this screen are examined, from complex geometry development to cost and fabrication estimations. 3D printing technologies potentially offer solutions to solve issues in construction and assembly times, reduce labour costs, and address the loss of hand craft making skills in a variety of cultures, typically Middle Eastern ones; this was a factor in the abandonment of old Mashrabiya in houses typified with Bahrain as a case. Presently, there is a growing wealth of literature that highlights not only the strength of Mashrabiya as a design concept but also as a possible 3D printed product. Interviews with a total of 42 local Bahraini manufacturers, academics and architects as well as 4 case studies and 2 surveys and 11 focus groups are hybrid mixed methods used to define a new 3D printed Mashrabiya (3DPM) prototype. The future of the 3D Mashrabiya prototype is further supported by economic forecasts, market research, and interviews with global manufacturers and 3D printing designers’ insights into the subject in an accretive design process. The research contributes to an understanding of the implications of technologies that enable mass customisation in the field of 3D-printed architecture in general and in the Bahraini market in particular. The process for developing a prototype screen and in determining its current economic value will prove significant in predicting the future benefits and obstacles of 3D-printed large scale architectural products in the coming five years as advised by industry experts. The main outcomes relate to establishing boundaries determining the validity of using 3D printing and a SAFE framework to produce a parametric Mashrabiya and other similar heritage architectural archetypes. This can be used to enhance the globalism of the design of Middle Eastern dwellings and to revive social identity and cultural traditions through innovative and reasonable yet superior design solutions using a hybrid architectural design language.
56

High Performance Digitally Manufactured Microwave and Millimeter-Wave Circuits and Antennas

Rojas, Eduardo A. 23 June 2017 (has links)
The potential of Additive Manufacturing (AM) for microwave and mm-wave applications is increasingly being revealed thanks to recent advancements in research. AM empowers engineers with new capabilities to manufacture complex conformal geometries quicker and at lower costs. It allows, for instance, the embedding of RF front ends into functional structures. In this dissertation, two aspects of AM are explored: (a) The development and characterization of techniques that improve the performance of AM microwave circuits and antennas, and (b) study of complex geometries, such as meshed structures, as an alternative to reduce material usage, cost, and weight of the components. Micro-dispensing of silver paste (CB028) is extensively used in this work as a viable approach for manufacturing microwave planar transmission lines. However, the performance and upper-frequency range of these lines are limited by the cross-sectional shape and electrical conductivity of the printed paste, as well as the achievable minimum feature size which is typically around 100 μm. In this work a picosecond Nd:YAG laser is used to machine slots in a 20-25 μm-thick layer of silver paste (Dupont CB028) that is micro-dispensed on a Rogers RT5870 substrate, producing coplanar waveguide transmission lines with 16-20 μm-wide slots. It is shown that the laser solidifies 2 μm wide region along the edges of the slots, thus significantly increasing the effective conductivity of the film and improving the attenuation constant of the lines. The extracted attenuation constant at 20 GHz for laser machined CB028 is 0.74 dB/cm. CPW resonators and filters show that the effective conductivity is in the range from 10 MS/m to 30 MS/m, which represents a 100x improvement when compared to the values obtained with the exclusive use of micro-dispensing. Another main aspect of this dissertation is the study of meshed structures in coplanar waveguides. For most AM processes the materials utilized for the conductive layer are the most expensive ones; hence, there is value in minimizing the conductor surface area used in a circuit. In this work, the approach of meshed ground coplanar waveguide (MGCPW) is analyzed by simulating, fabricating and measuring a broad set of meshed ground geometry sizes. Furthermore, a physical-mathematical model is presented, which predicts the characteristic impedance and the capacitance per unit length of MGCPW with less than 5.4% error compared to simulated data. A set of filters is designed and fabricated in order to demonstrate the approach. The main parameter affected by meshing the ground plane is the attenuation constant of the waveguide. It is shown that 50% mesh density in the ground plane of a MGCPW line can be used with less than 25% increase in the loss. In contrast, the loss of finite ground coplanar waveguide (FGCPW) can increase by as much as 108% when the ground size is reduced by the same factor (50%). Both 3D printing (micro-dispensing) and traditional printed circuit board manufacturing are used in this work, and most of the propagation characterization is performed at 4 GHz. A meshing technique is also applied to rectangular waveguides, and its effects are studied. It is presented as an option for high power, low loss, but also reduced weight applications. A set of meshed Ku-band waveguides was fabricated using binder jetting 3D printing technology showing that the weight can be reduced by 22% with an increase in loss of only 5%, from 0.019 dB/cm for the solid part to 0.020 dB/cm average across the band with the meshed design. Further weight reduction is possible if higher loss is allowed. To demonstrate the concept, a comparison is made between non-meshed and meshed waveguide 4 pole Chebyshev filters. Finally, the BJ technology is characterized for Ku-Band rectangular waveguide and reflector antenna applications. This technology is characterized using electron beam microscopy (SEM) and energy dispersive spectroscopy (EDS). The RF performance of the 3D printed circuits is benchmarked with Ka-band cavity resonators, waveguide sections, and a filter. An unloaded resonator Q of 616 is achieved, and the average attenuation of the WR-28 waveguide section is 4.3 dB/m. The BJ technology is tested with a meshed parabolic reflector antenna, where the illuminating horn, waveguide feed, and a filter are printed in a single piece. The antenna shows a peak gain of 24.56 dBi at 35 GHz.
57

Microneedle Platforms for Cell Analysis

Kavaldzhiev, Mincho 11 1900 (has links)
Micro-needle platforms are the core components of many recent drug delivery and gene-editing techniques, which allow for intracellular access, controlled cell membrane stress or mechanical trapping of the nucleus. This dissertation work is devoted to the development of micro-needle platforms that offer customized fabrication and new capabilities for enhanced cell analyses. The highest degree of geometrical flexibility is achieved with 3D printed micro-needles, which enable optimizing the topographical stress environment for cells and cell populations of any size. A fabrication process for 3D-printed micro-needles has been developed as well as a metal coating technique based on standard sputter deposition. This extends the functionalities of the platforms by electrical as well as magnetic features. The micro-needles have been tested on human colon cancer cells (HCT116), showing a high degree of biocompatibility of the platform. Moreover, the capabilities of the 3D-printed micro-needles have been explored for drug delivery via the well-established electroporation technique, by coating the micro-needles with gold. Antibodies and fluorescent dyes have been delivered to HCT116 cells and human embryonic kidney cells with a very high transfection rate up to 90%. In addition, the 3D-printed electroporation platform enables delivery of molecules to suspended cells or adherent cells, with or without electroporation buffer solution, and at ultra-low voltages of 2V. In order to provide a micro-needle platform that exploits existing methods for mass fabrication a custom designed template-based process has been developed. It has been used for the production of gold, iron, nickel and poly-pyrrole micro-needles on silicon and glass substrates. A novel delivery method is introduced that activates the micro-needles by electromagnetic induction, which enables to wirelessly gain intracellular access. The method has been successfully tested on HCT116 cells in culture, where a time-dependent delivery rate has been found. The electromagnetic delivery concept is particularly promising for future in-vivo applications. Finally, the micro-needle platforms developed in this work will provide researchers with new capabilities that will help them to further advance the field of mechanobiology, drug delivery treatments, stem cells research and more. The proposed platforms are capable of applying various stimuli, analyzing cell responses in real time, drug delivery, and they also have the potential to add additional functionalities in the future.
58

Beyond Plastic Filament: An Exploration of 3D Printing as a Part of Creative Practices

January 2020 (has links)
abstract: The current push towards integrating new digital fabrication techniques into all parts of daily life has raised concerns about the changing role of the craftsperson in creative making. The goal of this dissertation is to gain insight into how new technologies can be incorporated into creative practices in a way that effectively supports the goals and workflows of practitioners. To do so, I explore three different cases in which 3D printing, a tool by which complex 3D objects are fabricated from digital designs, is used in tandem with traditional creative practices. Each project focuses on a different way to incorporate 3D printed objects, whether it be as a visualization for artists’ processes, a substitute medium for finished artworks, or as a step toward a larger fabrication workflow. Through this research, I discover how the integration of 3D printing affects creative processes, explore how these changes influence how and why practitioners engage in artistic practices, and gain insight into directions for future technological innovations. / Dissertation/Thesis / Doctoral Dissertation Media Arts and Sciences 2020
59

Predicting Process and Material Design Impact on and Irreversible Thermal Strain in Material Extrusion Additive Manufacturing

D'Amico, Tone Pappas 09 August 2019 (has links)
Increased interest in and use of additive manufacturing has made it an important component of advanced manufacturing in the last decade. Material Extrusion Additive Manufacturing (MatEx) has seen a shift from a rapid prototyping method harnessed only in parts of industry due to machine costs, to something widely available and employed at the consumer level, for hobbyists and craftspeople, and industrial level, because falling machine costs have simplified investment decisions. At the same time MatEx systems have been scaled up in size from desktop scale Fused Filament Fabrication (FFF) systems to room scale Big Area Additive Manufacturing (BAAM). Today MatEx is still used for rapid prototyping, but it has also found application in molds for fiber layup processes up to the scale of wind turbine blades. Despite this expansion in interest and use, MatEx continues to be held back by poor part performance, relative to more traditional methods such as injection molding, and lack of reliability and user expertise. In this dissertation, a previously unreported phenomenon, irreversible thermal strain (ITε), is described and explored. Understanding ITε improves our understanding of MatEx and allows for tighter dimensional control of parts over time (each of which speaks to extant challenges in MatEx adoption). It was found that ITε occurs in multiple materials: ABS, an amorphous polymer, and PLA, a semi-crystalline one, suggesting a number of polymers may exhibit it. Control over ITε was achieved by tying its magnitude back to part layer thickness and its directionality to the direction of roads within parts. This was explained in a detail by a micromechanical model for MatEx described in this document. The model also allows for better description of stress-strain response in MatEx parts broadly. Expanding MatEx into new areas, one-way shape memory in a commodity thermoplastic, ABS, was shown. Thermal history of polymers heavily influences their performance and MatEx thermal histories are difficult to measure experimentally. To this end, a finite element model of heat transfer in the part during a MatEx build was developed and validated against experimental data for a simple geometry. The application of the model to more complex geometries was also shown. Print speed was predicted to have little impact on bonds within parts, consistent with work in the literature. Thermal diffusivity was also predicted to have a small impact, though larger than print speed. Comparisons of FFF and BAAM demonstrated that, while the processes are similar, the size scale difference changes how they respond to process parameter and material property changes, such as print speed or thermal diffusivity, with FFF having a larger response to thermal diffusivity and a smaller response to print speed. From this experimental and simulation work, understanding of MatEx has been improved. New applications have been shown and rational design of both MatEx processes and materials for MatEx has been enabled.
60

Miniaturized Passive Hydrogel Check Valves for the Treatment of Hydrocephalic Fluid Retention

January 2020 (has links)
abstract: BioMEMS has the potential to provide many future tools for life sciences, combined with microfabrication technologies and biomaterials. Especially due to the recent corona 19 epidemic, interest in BioMEMS technology has increased significantly, and the related research has also grown significantly. The field with the highest demand for BioMEMS devices is in the medical field. In particular, the implantable device field is the largest sector where cutting-edge BioMEMS technology is applied along with nanotechnology, artificial intelligence, genetic engineering, etc. However, implantable devices used for brain diseases are still very limited because unlike other parts of human organs, the brain is still unknow area which cannot be completely replaceable.To date, the most commercially used, almost only, implantable device for the brain is a shunt system for the treatment of hydrocephalus. The current cerebrospinal fluid (CSF) shunt treatment yields high failure rates: ~40% within first 2 years and 98% within 10 years. These failures lead to high hospital admission rates and repeated invasive surgical procedures, along with reduced quality of life. New treatments are needed to improve the disease burden associated with hydrocephalus. In this research, the proposed catheter-free, completely-passive miniaturized valve is designed to alleviate hydrocephalus at the originating site of the disorder and diminish failure mechanisms associated with current treatment methods. The valve is composed of hydrogel diaphragm structure and polymer or glass outer frame which are 100% bio-compatible material. The valve aims to be implanted between the sub-arachnoid space and the superior sagittal sinus to regulate the CSF flow substituting for the obstructed arachnoid granulations. A cardiac pacemaker is one of the longest and most widely used implantable devices and the wireless technology is the most widely used with it for easy acquisition of vital signs and rapid disease diagnosis without clinical surgery. But the conventional pacemakers with some wireless technology face some essential complications associated with finite battery life, ultra-vein pacing leads, and risk of infection from device pockets and leads. To solve these problems, wireless cardiac pacemaker operating in fully-passive modality is proposed and demonstrates the promising potential by realizing a prototype and functional evaluating. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2020

Page generated in 0.0274 seconds