• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 21
  • 6
  • 5
  • Tagged with
  • 84
  • 84
  • 20
  • 20
  • 14
  • 13
  • 13
  • 12
  • 12
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The Characteristics of Acoustic Absorptive Material at Various Water Depth

Cheng, Jyin-Wen 30 August 2000 (has links)
In general the acoustic wave is used as a detecting tool in the ocean, its application placing a sound source into ocean, then the sound may impinge involves the target by wave propagation in the ocean. Due to the reflection and scattering effect of target, part of acoustic energy will be received by transducer through the path of reflection. The goal of target identification can be achieved by signal processing finally. If a submarine wish to avoid the detection by sonar system , it should attenuate the acoustic energy . Therefore the reflected signal can not be analyzed and distinguished by sonar system .The area of underwater acoustic attenuation has been researched for camouflaging submarine purpose for many years. There are two acoustic energy attenuation methods to reduce the reflective wave and transmitted wave. One is active attenuation control, which is to understand how the destructive interference of incident acoustic wave could be achieved for acoustic energy attenuation purposes. The other one is passive acoustic attenuation technique, which rely on the attenuation performance of underwater acoustic material to reduce the acoustic energy of incident wave. To be evaluated the acoustic absorption efficiency of material. Although the efficiency of active attenuation control is better compared with passive acoustic attenuation technique, the development of active attenuation control have not been highly pursued in the commercial market for underwater application, due to the limitations in piezo-composite technology. The cost of installation and maintenance is also higher in active control. This thesis studied the acoustic absorptive material based on passive acoustic attenuation technique . It could be attenuated the acoustic energy and spectrum of reflection and transmitted wave. Therefore, the signal can not be analyzed and distinguishing by sonar system. According to Alberich acoustic absorption coating, their designs have the inherent problem of degradation under hydrostatic pressure and temperature. Thus, the objective of this thesis is to study the characteristics of the acoustic absorptive material at various water depth where the hydrostatic pressure are different. To measure the characteristics of acoustic material, an experimental system is setup, and the standard measuring method and criterion is also studied for future experimental reference. Furthermore, the different measurement parameters are discussed for accuracy of experimental results. There are five specimens tested in this experiment. The specimens are mainly made of neoprene and sawdust mixture and marked as A1¡BA2¡BA3¡BA4¡Band A5 respectively. The composites of these specimens are analyzed by x-ray diffraction meter. The physical properties and the acoustic absorption in airborne were measured before underwater hydrostatic pressure applied on these specimens. The physical properties show that the impedance of these specimens is very close to acoustic impedance of the water. Therefore, the specimen may be considered an acoustic isolator in the air. To reduce the boundaries interference, such as reflection, diffraction and scattering signal. The pulse sound is used as sound source in this underwater experiment. Moreover, the gating system is applied to capture the proper signals for analysis. The echo reduction and insertion loss are measured in the 11 to 30 kHz frequency region for acoustic absorption evaluation in this experiment. The performance of experiment is found that specimen has the echo reduction about 10 dB and the insertion loss about 15 dB at 1 bar hydrostatic pressure. But when the hydrostatic pressure was increased to 5 bar, the echo reduction and insertion loss were both decreased by 3 dB. In addition, when the hydrostatic pressure was loaded at 10 bar, the echo reduction was decreased by 8 dB, and the insertion loss was decreased by 5 dB. It became evident that the efficiency of acoustic absorption is degraded under the higher hydrostatic pressure.
32

Time-frequency methods for the analysis of multistatic acoustic scattering of elastic shells in shallow water.

Anderson, Shaun David 26 January 2011 (has links)
The development of low-frequency sonar systems, using for instance a network of autonomous systems in unmanned vehicles, provides a practical means for bistatic measurements (i.e. when the source and receiver are widely separated) allowing for multiple viewpoints of the target of interest. Time-frequency analysis, in particular Wigner-Ville analysis, takes advantage of the evolution time dependent aspect of the echo spectrum to differentiate a man-made target (e.g. elastic spherical shell) from a natural one of the similar shape (e.g. solid). A key energetic feature of fluid loaded and thin spherical shell is the coincidence pattern, or mid-frequency enhancement echoes (MFE), that result from antisymmetric Lamb-waves propagating around the circumference of the shell. This thesis investigates numerically the bistatic variations of the MFE (with respect to the monostatic configuration) using the Wigner-Ville analysis. The observed time-frequency shifts of the MFE are modeled using a previously derived quantitative ray theory for spherical shell's scattering. Additionally, the advantage of an optimal array beamformer, based on joint time delays and frequency shifts (over a conventional time-delay beamformer) is illustrated for enhancing the detection of the MFE recorded across a bistatic receiver array.
33

Modelling and Characterization of Perforates in Lined Ducts and Mufflers

Elnady, Tamer January 2004 (has links)
<p>Increased national and international travel over the lastdecades has caused an increase in the global number ofpassengers using different means of transportation. Greateffort is being directed to improving the noisy environment inthe residential community. This is to face the growing strictnoise requirements which are implemented by international noiseregulatory authorities, governments, and local airports. Thereis also a strong competition between different manufacturers tomake their products quieter. The propulsion system in anaircraft is the major source of noise during relevant flightconditions. The engine noise in a vehicle dominates the totalradiated noise at low speeds especially inside cities. Manyrecent studies on noise reduction involve the use of perforatedplates in the air and gas flow ducting connected to the engine.This thesis deals with the modelling of perforates as anabsorbent.</p><p>There are many difficulties in using liners in theseapplications. The most important is that there is no largesurface area to which the linings may be applied. Equally, theenvironment in which linings have to survive is hostile.Therefore, liners have to be carefully tailored in order toachieve the most efficient attenuation. The full-scalesimulation testing, which is usually necessary to define thenoise attenuation produced by a liner installation, is bothtime-consuming and expensive. Therefore, a need for accuratemodels is a must. This thesis fills some gaps in the impedancemodelling of perforated liners. It also concentrates on thosecomplicated situations of sound propagation in ducts that weresolved earlier using Finite Element Methods. Alternateanalytical solutions to these problems are developed here,which gives more physical insight into the results.</p><p>The key design parameter of perforates is the acousticimpedance. The impedance is what determines their efficiency toabsorb sound waves. A semi empirical impedance model wasdeveloped to be capable of accurately predicting the linerimpedance as a function of its physical properties and thesurrounding conditions. It was compared to all previous modelsin the literature. Nothing in the literature has been reportedon the effect of temperature on the perforate impedance,therefore a complete study was performed. A new inverseanalytical impedance measurement technique was proposed. It isbased on educing the impedance value based on the measurementof the attenuation across a lined duct section. Twoapplications were further considered: The effect of hard stripsin lined ducts on there attenuation properties; and themodelling of perforations in a complicated automotive mufflersystem.</p><p><b>Keywords:</b>Perforates–Liners–Acousticimpedance–Hot stream liners–Hard splices–Mufflers–Lined ducts–Collocation–Flowduct.</p>
34

Transfer function of the embryonic avian middle ear /

Kim, Young Seon, January 2002 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2002. / Typescript. Vita. Includes bibliographical references. Also available on the Internet.
35

Transfer function of the embryonic avian middle ear

Kim, Young Seon, January 2002 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2002. / Typescript. Vita. Includes bibliographical references. Also available on the Internet.
36

AN ACOUSTIC IMPEDANCE INVERSION APPROACH TO DETECT AND CHARACTERIZE GAS HYDRATE ACCUMULATIONS WITH SEISMIC METHODS: AN EXAMPLE FROM THE MALLIK GAS HYDRATE FIELD, NWT, CANADA

Bellefleur, Gilles, Riedel, Michael, Mair, Stephanie, Brent, Tom 07 1900 (has links)
Two internationally-partnered research well programs, in 1998 and 2002, studied the Mallik gas hydrate accumulation in the Mackenzie Delta, Canada. Gas hydrate bearing intervals were cored, logged and production tested thus establishing Mallik as an excellent site for testing geophysical imaging techniques. Here, we apply a model-based acoustic impedance inversion technique to 3D seismic reflection data acquired over the Mallik area to characterize gas hydrate occurrences and to help define their spatial extent away from well control. Sonic logs in Mallik research wells show that P-wave velocity of sediments increases with hydrate saturation, enough to produce detectable reflections for the lower two of three known gas hydrate zones. The inversion method converts these reflections into acoustic impedances from which velocity and hydrate saturation can be estimated. Acoustic impedance inversion results indicate that the deepest gas hydrate zone covers an area of approximately 900,000 m2. With some assumptions on the lateral continuity of gas hydrate saturation, porosity and thickness measured at the wells, we estimate that this zone contains approximately 771x106 m3 of gas at standard atmospheric pressure. At a regional scale, results allowed the detection of a high-velocity area near the A-06 well, about 6 km south-east of 5L-38. We infer that the high velocity area corresponds to a gas hydrate accumulation. Logging data in A-06 indicate the presence of gas hydrates in this area and support our interpretation.
37

Fast History Matching of Time-Lapse Seismic and Production-Data for High Resolution Models

Rey Amaya, Alvaro 2011 August 1900 (has links)
Seismic data have been established as a valuable source of information for the construction of reservoir simulation models, most commonly for determination of the modeled geologic structure, and also for population of static petrophysical properties (e.g. porosity, permeability). More recently, the availability of repeated seismic surveys over the time scale of years (i.e., 4D seismic) has shown promising results for the qualitative determination of changes in fluid phase distributions and pressure required for determination of areas of bypassed oil, swept volumes and pressure maintenance mechanisms. Quantitatively, and currently the state of the art in reservoir model characterization, 4D seismic data have proven distinctively useful for the calibration of geologic spatial variability which ultimately contributes to the improvement of reservoir development and management strategies. Among the limited variety of techniques for the integration of dynamic seismic data into reservoir models, streamline-based techniques have been demonstrated as one of the more efficient approaches as a result of their analytical sensitivity formulations. Although streamline techniques have been used in the past to integrate time-lapse seismic attributes, the applications were limited to the simplified modeling scenarios of two-phase fluid flow and invariant streamline geometry throughout the production schedule. This research builds upon and advances existing approaches to streamline-based seismic data integration for the inclusion of both production and seismic data under varying field conditions. The proposed approach integrates data from reservoirs under active reservoir management and the corresponding simulation models can be constrained using highly detailed or realistic schedules. Fundamentally, a new derivation of seismic sensitivities is proposed that is able to represent a complex reservoir evolution between consecutive seismic surveys. The approach is further extended to manage compositional reservoir simulation with dissolution effects and gravity-convective-driven flows which, in particular, are typical of CO2 transport behavior following injection into deep saline aquifers. As a final component of this research, the benefits of dynamic data integration on the determination of swept and drained volumes by injection and production, respectively, are investigated. Several synthetic and field reservoir modeling scenarios are used for an extensive demonstration of the efficacy and practical feasibility of the proposed developments.
38

Linear and nonlinear analysis of the acoustic response of perforated plates traversed by a bias flow / Analyse linéaire et non linéaire de la réponse acoustique de plaques perforées traversées par un écoulement moyen

Scarpato, Alessandro 10 June 2014 (has links)
Les instabilités thermo-acoustiques causent des problèmes récurrents dans les chambres de combustion pour une large gamme d'applications industrielles, allant des chaudières domestiques aux turbines à gaz, en passant par les moteurs fusées. Ces phénomènes résultent d’un couplage résonant entre la dynamique de la combustion et les modes acoustiques du foyer, et peuvent donner lieu à de fortes vibrations, un vieillissement prématuré des composants de la chambre, voire des dommages structurels. Les mécanismes physiques mis en jeu sont complexes et difficiles à modéliser, ainsi les oscillations thermo-acoustiques ne sont pas facilement prévisibles au stade de la conception d’une chambre de combustion. Dans de nombreux foyers, des systèmes d’amortissement passifs sont installés pour augmenter la dissipation d’énergie acoustique et empêcher le développement de ces instabilités. Dans ce travail, des systèmes d’amortissement basés sur des plaques perforées couplées à une cavité résonante et traversées par un écoulement moyen sont analysés. Les principaux objectifs sont : (i) d’améliorer et de simplifier la conception de systèmes d’amortissement robustes en maximisant leurs propriétés d’absorption acoustique en régime linéaire, (ii) d’analyser l’effet de l’amplitude des ondes sonores incidentes sur la réponse acoustique des plaques perforées et (iii) de développer des modèles capables de reproduire cette réponse aux hautes amplitudes. Tout d’abord, deux régimes asymptotiques intéressants sont identifiés où le système fonctionne à faibles et forts nombres de Strouhal respectivement. Dans ces régimes la conception d’un système d’amortissement maximisant l’absorption acoustique est grandement simplifiée, puisque les calculs de la vitesse optimale de l’écoulement et de la taille de la cavité sont découplés. Il est démontré qu’à faible nombre de Strouhal le système se comporte comme un résonateur quart d’onde, et dispose d’une bande d’absorption très large. À fort nombre de Strouhal, le système fonctionne comme un résonateur de Helmholtz, comportant une cavité de taille plus réduite, mais une bande d’absorption beaucoup plus étroite que dans le régime précédent. Ces prévisions sont confirmées par des mesures réalisées dans les différents régimes identifiés sur un dispositif expérimental dédié. L’évolution des propriétés acoustiques d’une plaque perforée lorsque l’amplitude de forçage augmente est ensuite examinée par le biais de simulations directes. Il est montré que la transition du régime linéaire au régime non linéaire se produit lorsque l’amplitude de la vitesse acoustique dans l’orifice est comparable à la vitesse de l’écoulement moyen dans les trous. Pour des amplitudes élevées, une inversion périodique de l’écoulement est observée dans l’orifice. Des anneaux tourbillonnaires sont alternativement éjectés en amont et en aval de l’orifice à une vitesse de convection qui augmente avec l’amplitude de la perturbation acoustique. Ces mécanismes influencent profondément l’absorption acoustique des plaques perforées dans le régime non linéaire. Deux nouveaux modèles décrivant la réponse non linéaire de ces systèmes sont ensuite développés en exploitant la trajectoire des vortex (modèle VC), et une approche quasi-stationnaire (modèle IDF). Les prévisions de ces modèles sont confrontées à des mesures effectuées dans le tube à impédance et aux résultats de simulations directes. Les résultats obtenus au cours de ces travaux peuvent être utilisés pour guider la conception de systèmes d’absorption robustes, capables de fonctionner dans des environnements difficiles avec des niveaux sonores élevés, comme ceux rencontrés lors d’instabilités thermo-acoustiques. / Thermo-acoustic instabilities are of primary concern in combustion chambers for a wide range of industrial applications, from domestic boiler to gas turbines or rocket engines. They are the consequence of a resonant coupling between the flame dynamics and the acoustic modes of the combustor, and can result in strong vibrations, early aging of combustor components and structural damage. The physical mechanisms involved are complex and difficult to model, thus thermo-acoustic oscillations are not easily predictable at the design stage of a combustor. In many combustors, passive dampers are implemented to increase the acoustic energy dissipation of the system and to hinder detrimental flame-acoustics interactions. In the present work, passive damping systems based on perforated screens backed by a resonant cavity and traversed by a bias flow are investigated. The main objectives are: (i) to improve and simplify the design of these dampers by maximizing their acoustic absorption properties in the linear regime, (ii) to analyze the effect of the sound wave amplitude on the acoustic response of these systems and (iii) to develop models capable of capturing absorption at high oscillation amplitudes. First, two interesting asymptotic regimes are identified where the plate operates at low and high Strouhal numbers respectively. In these regimes the design of a damper maximizing absorption is greatly simplified, since the choice of the optimal bias flow velocity and back cavity size can be decoupled. It is shown that at low Strouhal numbers the damper behaves as a quarter-wave resonator, and features a wide absorption bandwidth. At high Strouhal numbers, the system operates as a Helmholtz resonator, featuring shorter optimal back cavity sizes but narrower absorption bandwidths. These predictions are compared to measurements in a dedicated experimental setup for the different operating regimes identified. The dependence of the acoustic properties of a perforated plate on the forcing amplitude is then examined by means of direct numerical simulations. It is shown that transition from linear to nonlinear regimes occurs when the acoustic velocity amplitude in the orifice is comparable to the mean bias flow velocity. At high amplitudes, periodic flow reversal is observed within the perforation, vortex rings are alternatively shed upstream and downstream of the hole and convected away at a velocity which is increasing with the forcing amplitude. These mechanisms greatly influence the acoustic absorption of the perforate in the nonlinear regime. Two novel models capturing this nonlinear response are then inferred based on an analysis of the vortex trajectory (VC model), and on a quasi-steady description of the flow (IDF model). Their predictions are finally compared to measurements conducted in an impedance tube, and to results from numerical simulations. The results obtained in this work can be used to ease the design of robust dampers capable of operating in harsh environments with high sound levels, such as those found during self-sustained thermo-acoustic instabilities.
39

Méthodes d'évaluation de la matrice de transfert des noyaux thermoacoustiques avec application à la conception de moteurs thermoacoustiques. / Methods for the transfer matrix evaluation of thermoacoustic cores with application to the design of thermoacoustic engines

Bannwart, Flavio de Campos 24 February 2014 (has links)
La conception d’un moteur thermoacoustique dépend de façon critique de la fiabilité des outils de prédiction théorique de ses performances. Une tentative pour réussir cette prédiction consiste à exploiter les coefficients de la matrice de transfert du noyau thermoacoustique (NTA) dans les modèles analytiques du moteur considéré. La matrice de transfert peut être obtenue soit par modélisation analytique, soit par des mesures acoustiques. Ce dernier cas, cependant, se présente comme une option intéressante pour éviter d’avoir à considérer la complexité des éléments constitutifs du NTA. La méthode analytique est tout d’abord présentée; elle ne vise que les cas de matériaux à géométrie simple. En ce qui concerne l’approche expérimentale, une méthode classique à deux charges est appliquée dans deux configurations différentes et, en outre, une méthode alternative basée sur des mesures d’impédance est développée ici et appliquée également. Une comparaison entre ces deux approches est évaluée au moyen d’une analyse de sensibilité. Différents matériaux sont testés, chacun jouant le rôle de l’élément poreux à l’intérieur d’un NTA soumis à plusieurs gradients de température. Seulement la méthode alternative s’avère performante pour tous les matériaux. Les matrices de transfert mesurées sont utilisées dans des modèles dédiés à prédire la fréquence de fonctionnement et le gain d’amplification thermoacoustique intrinsèque d’une machine équipée du NTA caractérisé au préalable. Une analyse comparative montre dans quelles conditions le seuil de déclenchement thermoacoustique est prévu ou non pour chaque matériau; elle révèle aussi les limites dimensionnelles de l’appareil expérimental pour mieux répondre aux estimations de performances. / The design of a thermoacoustic (TA) engine is improved towards the reliability of its performance prediction. An attempt to succeed in this prediction comes from the knowledge of the TA core (TAC) transfer matrix, which can be exploited in analytical models for the given engine. The transfer (T) matrix itself may be obtained either by analytical modeling or acoustic measurements. The latter consist in an interesting option to avoid thermo-physical or geometrical considerations of complex structures, as the TAC is treated as a black box. However, before proceeding with the experimental approach, an analytical solution is presented for comparison purposes, but it contemplates only cases of materials of simple geometry. Concerning the experimental approach, a classical two-load method is applied in two different configurations and an alternative method based on impedance measurements is here developed and applied. A comparison between these approaches is evaluated by means of a sensitivity analysis. Different materials are tested, each one playing the porous element allotted inside the TAC, which is in its turn submitted to several different regimes of steady state temperature gradient. The alternative method is the only one successful for all materials. In this manner, the measured transfer matrices are applied into a proper modeling devoted to predict both the operating frequency and the intrinsic TA amplification gain. A comparative analysis shows in what conditions the TA threshold is expected or not for each material; it also reveals the limitations of the experimental apparatus in what concerns the appropriate dimensions to better fit the performance investigations.
40

Medidas de imitância acústica de banda larga em indivíduos com otosclerose / Wideband acoustic immittance measurements in subjects with otosclerosis

Juliana Nogueira Chaves 29 March 2017 (has links)
Na prática clínica, nota-se uma dificuldade em identificar a rigidez do sistema tímpano-ossicular decorrente da Otosclerose por meio dos métodos de avaliação rotineiramente empregados. Assim, as medidas de imitância acústica de banda larga podem fornecer mais informações sobre a condição do sistema tímpano-ossicular por avaliarem uma ampla faixa de frequência. O objetivo do estudo foi caracterizar as medidas de imitância acústica de banda larga com os estímulos tom puro e chirp em indivíduos com diagnóstico de Otosclerose submetidos à estapedectomia ou estapedotomia. Foram avaliados 40 indivíduos na faixa etária de 33 a 80 anos, totalizando 54 orelhas operadas e 22 orelhas não operadas. A avaliação audiológica foi realizada por meio da otoscopia, audiometria tonal liminar, logoaudiometria e imitanciometria. As medidas de imitância acústica de banda larga foram obtidas por meio do sistema de medidas Middle-Ear Power Analyzer MEPA3, versão 5.0 (Mimosa Acoustics), utilizando os estímulos tom puro e chirp. Os dados obtidos foram submetidos à análise estatística descritiva e inferencial, com nível de significância de 0,05. As orelhas com Otosclerose apresentaram maior absorvância em 750 Hz, uma tênue diminuição até 3000 Hz, acentuando-se a partir desta frequência. A magnitude da admitância foi maior na faixa de frequência de 1992 a 4008 Hz, assim como a magnitude da impedância foi maior nas frequências baixas com diminuição até 4008 Hz e aumento em 6000 Hz. Estas orelhas foram dominadas pela rigidez nos sons graves e médios, por resistência entre 3000 e 4008 Hz e a partir desta frequência pela massa. A fase da impedância foi maior em 258 Hz e o delay da reflectância (slope) apresentou uma variação de comportamento entre as frequências, não sendo possível caracterizar um padrão de resposta. Conclui-se que há diferenças nas medidas obtidas nas orelhas com Otosclerose submetidas à cirurgia, quando analisadas as frequências baixas e médias, o que demonstra o impacto positivo da intervenção cirúrgica na funcionalidade do sistema tímpano-ossicular. / In clinical practice, there is a difficulty in identifying the rigidity of the tympano-ossicular system resulting from Otosclerosis through the routinely employed evaluation methods. Thus, wideband acoustic immitance measurements can provide more information on the condition of the tympanic-ossicle system by evaluating a wide frequency range. This study aimed at characterizing the wideband acoustic immitance measurements with the pure tone and chirp stimuli in individuals diagnosed with Otosclerosis submitted to stapedectomy or stapedotomy. Forty individuals aged 33 to 80 years were evaluated, totaling 54 operated and 22 non-operated ears. Audiology assessment was performed through otoscopy, pure-tone audiometry, logoaudiometry and imitanciometry. Wideband acoustic immitance measurements were obtained using the Middle-Ear Power Analyzer (MEPA3), version 5.0 (Mimosa Acoustics), by means of pure tone and chirp stimuli. Data were submitted to descriptive and inferential statistical analysis, with a significance level of 0.05. The ears with Otosclerosis presented a greater absorbance in 750 Hz, a slight diminution until 3000 Hz, being accentuated from this frequency. The admittance magnitude was higher in the frequency range from 1992 to 4008 Hz, as well as the impedance magnitude was higher in the low frequencies with a decrease up to 4008 Hz and an increase in 6000 Hz. These ears were dominated by rigidity in the low and medium sounds, by resistance between 3000 and 4008 Hz, and from this frequency, by the mass. The impedance phase was higher at 258 Hz and the reflectance delay (slope) showed a behavioral variation between the frequencies, a response not being characterized. It can be concluded that there are differences in the measurements obtained in Otosclerosis ears submitted to surgery, when the low and medium frequencies were analyzed, which demonstrates the positive impact of the surgical intervention on the tympano-ossicle system.

Page generated in 0.0325 seconds