• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling and Characterization of Perforates in Lined Ducts and Mufflers

Elnady, Tamer January 2004 (has links)
Increased national and international travel over the lastdecades has caused an increase in the global number ofpassengers using different means of transportation. Greateffort is being directed to improving the noisy environment inthe residential community. This is to face the growing strictnoise requirements which are implemented by international noiseregulatory authorities, governments, and local airports. Thereis also a strong competition between different manufacturers tomake their products quieter. The propulsion system in anaircraft is the major source of noise during relevant flightconditions. The engine noise in a vehicle dominates the totalradiated noise at low speeds especially inside cities. Manyrecent studies on noise reduction involve the use of perforatedplates in the air and gas flow ducting connected to the engine.This thesis deals with the modelling of perforates as anabsorbent. There are many difficulties in using liners in theseapplications. The most important is that there is no largesurface area to which the linings may be applied. Equally, theenvironment in which linings have to survive is hostile.Therefore, liners have to be carefully tailored in order toachieve the most efficient attenuation. The full-scalesimulation testing, which is usually necessary to define thenoise attenuation produced by a liner installation, is bothtime-consuming and expensive. Therefore, a need for accuratemodels is a must. This thesis fills some gaps in the impedancemodelling of perforated liners. It also concentrates on thosecomplicated situations of sound propagation in ducts that weresolved earlier using Finite Element Methods. Alternateanalytical solutions to these problems are developed here,which gives more physical insight into the results. The key design parameter of perforates is the acousticimpedance. The impedance is what determines their efficiency toabsorb sound waves. A semi empirical impedance model wasdeveloped to be capable of accurately predicting the linerimpedance as a function of its physical properties and thesurrounding conditions. It was compared to all previous modelsin the literature. Nothing in the literature has been reportedon the effect of temperature on the perforate impedance,therefore a complete study was performed. A new inverseanalytical impedance measurement technique was proposed. It isbased on educing the impedance value based on the measurementof the attenuation across a lined duct section. Twoapplications were further considered: The effect of hard stripsin lined ducts on there attenuation properties; and themodelling of perforations in a complicated automotive mufflersystem. Keywords:Perforates–Liners–Acousticimpedance–Hot stream liners–Hard splices–Mufflers–Lined ducts–Collocation–Flowduct.
2

Modelling and Characterization of Perforates in Lined Ducts and Mufflers

Elnady, Tamer January 2004 (has links)
<p>Increased national and international travel over the lastdecades has caused an increase in the global number ofpassengers using different means of transportation. Greateffort is being directed to improving the noisy environment inthe residential community. This is to face the growing strictnoise requirements which are implemented by international noiseregulatory authorities, governments, and local airports. Thereis also a strong competition between different manufacturers tomake their products quieter. The propulsion system in anaircraft is the major source of noise during relevant flightconditions. The engine noise in a vehicle dominates the totalradiated noise at low speeds especially inside cities. Manyrecent studies on noise reduction involve the use of perforatedplates in the air and gas flow ducting connected to the engine.This thesis deals with the modelling of perforates as anabsorbent.</p><p>There are many difficulties in using liners in theseapplications. The most important is that there is no largesurface area to which the linings may be applied. Equally, theenvironment in which linings have to survive is hostile.Therefore, liners have to be carefully tailored in order toachieve the most efficient attenuation. The full-scalesimulation testing, which is usually necessary to define thenoise attenuation produced by a liner installation, is bothtime-consuming and expensive. Therefore, a need for accuratemodels is a must. This thesis fills some gaps in the impedancemodelling of perforated liners. It also concentrates on thosecomplicated situations of sound propagation in ducts that weresolved earlier using Finite Element Methods. Alternateanalytical solutions to these problems are developed here,which gives more physical insight into the results.</p><p>The key design parameter of perforates is the acousticimpedance. The impedance is what determines their efficiency toabsorb sound waves. A semi empirical impedance model wasdeveloped to be capable of accurately predicting the linerimpedance as a function of its physical properties and thesurrounding conditions. It was compared to all previous modelsin the literature. Nothing in the literature has been reportedon the effect of temperature on the perforate impedance,therefore a complete study was performed. A new inverseanalytical impedance measurement technique was proposed. It isbased on educing the impedance value based on the measurementof the attenuation across a lined duct section. Twoapplications were further considered: The effect of hard stripsin lined ducts on there attenuation properties; and themodelling of perforations in a complicated automotive mufflersystem.</p><p><b>Keywords:</b>Perforates–Liners–Acousticimpedance–Hot stream liners–Hard splices–Mufflers–Lined ducts–Collocation–Flowduct.</p>
3

Innovative noise control in ducts

Farooqui, Maaz January 2016 (has links)
The objective of this doctoral thesis is to study three different innovative noise control techniques in ducts namely: acoustic metamaterials, porous absorbers and microperforates. There has been a lot of research done on all these three topics in the context of duct acoustics. This research will assess the potential of the acoustic metamaterial technique and compare to the use of conventional methods using microperforated plates and/or porous materials.  The objective of the metamaterials part is to develop a physical approach to model and synthesize bulk moduli and densities to feasibly control the wave propagation pattern, creating quiet zones in the targeted fluid domain. This is achieved using an array of locally resonant metallic patches. In addition to this, a novel thin slow sound material is also proposed in the acoustic metamaterial part of this thesis. This slow sound material is a quasi-labyrinthine structure flush mounted to a duct, comprising of coplanar quarter wavelength resonators that aims to slow the speed of sound at selective resonance frequencies. A good agreement between theoretical analysis and experimental measurements is demonstrated. The second technique is based on acoustic porous foam and it is about modeling and characterization of a novel porous metallic foam absorber inside ducts. This material proved to be a similar or better sound absorber compared to the conventional porous absorbers, but with robust and less degradable properties. Material characterization of this porous absorber from a simple transfer matrix measurement is proposed.The last part of this research is focused on impedance of perforates with grazing flow on both sides. Modeling of the double sided grazing flow impedance is done using a modified version of an inverse semi-analytical technique. A minimization scheme is used to find the liner impedance value in the complex plane to match the calculated sound field to the measured one at the microphone positions. / <p>QC 20160923</p>
4

Aeroacoustics Studies of Duct Branches with Application to Silencers

Karlsson, Mikael January 2010 (has links)
New methodologies and concepts for developing compact and energy efficient automotive exhaust systems have been studied. This originates in the growing concern for global warming, to which road transportation is a major contributor. The focus has been on commercial vehicles—most often powered by diesel engines—for which the emission legislation has been dramatically increased over the last decade. The emissions of particulates and nitrogen oxides have been successfully reduced by the introduction of filters and catalytic converters, but the fuel consumption, which basically determines the emissions of carbon dioxides, has not been improved accordingly. The potential reduction of fuel consumption by optimising the exhaust after-treatment system (assuming fixed after-treatment components) of a typical heavy-duty commercial vehicle is ~4%, which would have a significant impact on both the environment and the overall economy of the vehicle. First, methodologies to efficiently model complex flow duct networks such as exhaust systems are investigated. The well-established linear multiport approach is extended to include flow-acoustic interaction effects. This introduces an effective way of quantifying amplification and attenuation of incident sound, and, perhaps more importantly, the possibility of predicting nonlinear phenomena such as self-sustained oscillations—whistling—using linear models. The methodology is demonstrated on T-junctions, which is a configuration well known to be prone to self-sustained oscillations for grazing flow past the side branch orifice. It is shown, and validated experimentally, that the existence and frequency of self-sustained oscillations can be predicted using linear theory. Further, the aeroacoustics of T-junctions are studied. A test rig for the full determination of the scattering matrix defining the linear three-port representing the T-junction is developed, allowing for any combination of grazing-bias flow. It is shown that the constructive flow-acoustic coupling not only varies with the flow configuration but also with the incidence of the acoustic disturbance. Configurations where flow from the side branch joins the grazing flow are still prone to whistling, while flow bleeding off from the main branch effectively cancels any constructive flow-acoustic coupling. Two silencer concepts are evaluated: first the classic Herschel-Quincke tube and second a novel modified flow reversal silencer. The Herschel-Quincke tube is capable of providing effective attenuation with very low pressure loss penalty. The attenuation conditions are derived and their sensitivity to mean flow explained. Two implementations have been modelled using the multiport methodology and then validated experimentally. The first configuration, where the nodal points are composed of T-junctions, proves to be an example where internal reflections in the system can provide sufficient feedback for self-sustained oscillation. Again, this is predicted accurately by the linear theory. The second implementation, with nodal points made from Y-junctions, was designed to allow for equal flow distribution between the two parallel ducts, thus allowing for the demonstration of the passive properties of the system. Experimental results presented for these two configurations correlate well with the derived theory. The second silencer concept studied consists of a flow reversal chamber that is converted to a resonator by acoustically short-circuiting the inlet and outlet ducts. The eigenfrequency of the resonator is easily shifted by varying the geometry of the short circuit, thus making the proposed concept ideal for implementation as a semi-active device. Again the concept is modelled using the multiport approach and validated experimentally. It is shown to provide significant attenuation over a wide frequency range with a very compact design, while adding little or no pressure loss to the system. / QC 20110208
5

Acoustic Characterization of Turbochargers and Pipe Terminations

Tiikoja, Heiki January 2012 (has links)
In search for quieter engines there is a need for a better understanding of the acoustic properties of engine intake and exhaust system components. Besides mufflers which have the purpose of reducing pressure pulses originating from the internal combustion (IC) engine, there are many components in a modern car exhaust and intake system, e.g., air-filters, coolers, catalytic converters, particulate filters - all having an effect on the pressure pulses or sound field in the system. In this work the focus is on the turbocharged IC-engine where both, sound scattering (reflection and transmission) and sound generation from automotive turbochargers are studied. In addition, sound reflection from an open ended pipe, such as the tailpipe of an IC-engine exhaust is investigated.             Accurate and efficient methods to fully characterize turbochargers by measuring the acoustic two-port have been developed.  Compared to earlier work, a number of modifications are suggested for improving the quality of the results. A study on three different automotive turbochargers is also presented, including data for sound scattering for both the compressor and turbine. The results for the transmission of sound, which is of interest for the ability of a turbocharger to reduce noise coming from the engine, is plotted for all tested cases against a dimensionless frequency scale (Helmholtz-number). This makes it possible to generalize the result in order to draw conclusions about the behavior for any turbocharger.              The sound generation was also studied and three different methods to estimate the sound power are suggested. The methods were used to investigate sound generation at different operating points and identify source mechanisms for a turbocharger compressor.             An accurate method for measuring the reflection of plane acoustic waves from a pipe termination in a duct with hot gas flow has been developed and tested. Representing the acoustical conditions at an exhaust tail-pipe, the data obtained is important for effective modeling of exhaust systems. The experimental results of the reflection coefficient were compared with Munt`s theory on flow duct openings. The measurements were carried out for air jet velocities up to Mach 0.4 and for flow temperatures up to 100°C in order to study temperature effects on the reflection properties. It was concluded, that the experimental results agree well with the Munt theory.
6

Studies of flow duct acoustics with applications to turbocharged engines

Rämmal, Hans January 2009 (has links)
A number of experimental and theoretical studies, performed in the field of technical flow duct acoustics are presented in this thesis. The acoustical methods treated are implemented on turbocharged IC-engines and engine gas exchange system components. A new method based on the well-known two-load technique has been developed. The method was applied to characterise the source data of various piston-engines with non-linear behaviour including a 6 cylinder turbo-charged truck diesel engine. The source characterisation results were compared to the results obtained using the linear two-load technique. It was demonstrated that the new non-linear multi-load technique gives improved results when the source is slightly non-linear. The use of active one-port models has been tested to characterize an air terminal device (ATD) as a source of flow generated noise. In order to predict the noise generation at different operating points of the device a scaling law was derived and verified. In the experimentally derived scaling law a flow speed dependence of 3 was found for the narrow band spectra, corresponding to a dipole-like behavior of the source in the plane wave range. The proposed technique was validated successfully and the results indicated a good prediction of in-duct sound generation by the air terminal device. Sound reflection from hot flow duct openings has been investigated experimentally. The reflection coefficient was measured for flow temperatures up to 500 ºC and jet velocities up to 108m/s. The results have been compared with famous Munt’s theory. It was concluded that at low Mach number and Helmholz number cases the results agree well with the Munt’s model. This was the first experimental validation of the theory for hot flow conditions. Experimental procedures to determine the sound transmission through automotive turbo-charger compressors were developed and described in detail. An overview of a unique turbocharger testing facility established at KTH CICERO in Stockholm is given. The facility can be used to measure acoustic two-port data for turbo-compressors. Results from measurements on a passenger car turbo-compressor are presented and the influence of operating conditions on the sound transmission is discussed. Current wave action models developed in CMT for computation of the gas exchange processes in I.C. engines have been implemented to determine the acoustic wave transmission through the turbo- compressor. The models are validated with the experimental data and the results are presented for different operating conditions of a Volvo passenger car turbo-compressor. / QC 20100809

Page generated in 0.057 seconds