• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 481
  • 51
  • 39
  • 26
  • 22
  • 20
  • 19
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 910
  • 910
  • 389
  • 249
  • 229
  • 222
  • 212
  • 143
  • 120
  • 112
  • 89
  • 69
  • 68
  • 68
  • 67
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

On Demand Liquid Metal Programming for Composite Property Tuning

Schloer, Gwyneth Marie 27 June 2023 (has links)
Soft electronics have become increasingly necessary for the implementation and integration of novel technologies in a variety of environments including aerospace, robotics, and healthcare. In order to develop these soft electronic devices, materials and manufacturing strategies are required for these soft, stretchable, and flexible systems. Further, the ability to effectively tune not only these mechanical properties but also their thermal and electrical properties is key to developing multifunctional materials for soft electronic applications. In this thesis, we present a method of printing highly tunable flexible and stretchable composites consisting of elastomers with liquid metal (LM) inclusions. We analyze the mechanical and functional behaviors and highlight the anisotropic properties that can be created via our printing system, and we apply this understanding to the development of a multiphase material with a programmable crack propagation path. Throughout this work we describe the process by which we use Direct Ink Write (DIW) technology, a type of additive manufacturing, to print 2D and 3D LM composites with tunable properties. The design map used to control LM microstructure in-situ is first outlined in Chapter 2. This tuning ability is used to print materials with varied LM microstructures and study the impact on mechanical, thermal, and electrical properties (Chapter 2, Chapter 3). We further study the elongated LM droplet inclusions for how their orientation with respect to loading may impact mechanical properties (Chapter 3). We further utilize these findings to control crack propagation along a specified path using only variations in printing parameters (Chapter 3). We provide concluding statements and outlooks on future work in Chapter 4. We then summarize our findings and detail the implications for the soft electronics field (Chapter 5). / Master of Science / Soft electronics have become increasingly necessary for the successful implementation and integration of novel technologies in a variety of environments including the spaces of aerospace, robotics, and healthcare. In order to develop these soft electronic devices, a new class of materials with soft, stretchable, and flexible properties is critical. Further, the ability to effectively tune not only these mechanical properties but also their thermal and electrical properties is key to developing high-functioning materials for soft electronic applications. In this thesis, we present a method of printing highly tunable flexible and stretchable materials with liquid metal (LM), known as liquid metal embedded elastomers (LMEEs). We analyze the mechanical properties and their direction-dependent nature that can be tuned via our printing system, and we apply this understanding to the development of a 2D material with a programmable path along which the material will tear. Throughout this work we describe the process by which we use Direct Ink Write (DIW) technology, a type of additive manufacturing, to print 2D and 3D LMEE structures with tunable properties. The design map used to control the LM microstructure in-situ is first outlined in Chapter 2. This tuning ability is used to print materials with varied LM microstructures and study the impact on mechanical, thermal, and electrical properties (Chapter 2, Chapter 3). We further study the elongated LM droplet inclusions for how their orientation with respect to loading may impact mechanical failure (Chapter 3). We further utilize these findings to control crack propagation along a specified path using only variations in printing parameters (Chapter 3). We provide concluding statements and outlooks on future work in Chapter 4. We then summarize our findings and detail the implications for the soft electronics field (Chapter 5)
22

Affordable Haptic Gloves Beyond the Fingertips

Ahn, Suyeon 11 October 2023 (has links)
With the increase in popularity of virtual reality (VR) systems, haptic devices have been garnering interest as means of augmenting users' immersion and experiences in VR. Unfortunately, most commercial gloves available on the market are targeted towards enterprise and research, and are too expensive to be accessible to the average consumer for entertainment. Some efforts have been made by gaming and do-it-yourself (DIY) enthusiasts to develop cheap, accessible haptic gloves, but due to cost limitations, the designs are often simple and only provide feedback at the fingertips. Considering the many types of grasps used by humans to interact with objects, it is evident that haptic gloves must offer feedback to many regions of the hand, such as the palm and lengths of the fingers to provide more realistic feedback. This thesis discusses a novel, affordable design that provides haptic feedback to the intermediate and proximal phalanges of the fingers (index, middle, ring and pinkie) using a ratchet and pawl actuation mechanism. / Master of Science / Haptics, or simulation of the sense of touch, is already implemented in consumer devices such as smartphones and gaming controllers to augment users' immersive experiences. With the growing popularity of virtual reality, further advancements are being made, particularly in wearable haptic gloves, so users may physically feel the interactions with objects in virtual reality through their hands. Unfortunately, these products are currently inaccessible to the average consumer due to unaffordable pricing. To combat this issue, there have been efforts to develop cheap haptic gloves, but existing designs only provide feedback at the fingertips. Fingertip-only feedback can feel unnatural to users since other areas of the hand are typically also involved when grasping objects. To address the issue presented by low-cost fingertip haptic gloves, this thesis proposes a design which expands feedback to other areas of the hand while maintaining affordability and accessibility to average consumers.
23

A Multimodal Approach to the Osseointegration of Porous Implants

Deering, Joseph January 2022 (has links)
The field of implantology is centred around interfacial interactions with the surrounding bone tissue. Assessing the suitability of novel engineering materials as implants for clinical application follows a preliminary workflow that can be simplified into three main stages: (i) implant design, (ii) in vitro compatibility, and (iii) in vivo compatibility. This thesis is subdivided to mirror each of these three themes, with a specific focus on the multiscale features of the implant itself as well as appositional bone tissue. In Chapter 3, a biomimetic approach to generate porous metallic implants is presented, using preferential seeding in a 3D Voronoi tessellation to create struts within a porous scaffold that mirror the trabecular orientation in human bone tissue. In Chapter 4, cytocompatible succinate-alginate films are generated to promote the in vitro activity of osteoblast-like cells and endothelial cells using a methodology that could be replicated to coat the interior and exterior of porous metals. In Chapter 5, two types of porous implants with graded and uniform pore size are implanted into rabbit tibiae to characterize the biological process of osseointegration into porous scaffolds. In Chapter 6, these same scaffolds are probed with high-resolution 2D and 3D methods using scanning transmission electron microscopy (STEM) and the first-ever application of plasma focused ion beam (PFIB) serial sectioning to observe structural motifs in biomineralization at the implant interface in 3D. This thesis provides new knowledge, synthesis techniques, and development of characterization tools for bone-interfacing implants, specifically including a means to: (i) provide novel biomaterial design strategies for additive manufacturing; (ii) synthesize coatings that are compatible with additively manufactured surfaces; (iii) improve our understanding of mineralization process in newly formed bone, with the ultimate goal of improving the osseointegration of implants. / Thesis / Doctor of Philosophy (PhD) / Metallic implants are widely used in dental and orthopedic applications but can be prone to failure or incomplete integration with bone tissue due to a breakdown at the bone-implant interface as defined by clinical standards. In order to improve the ability of the implant to anchor itself into the surrounding bone tissue, it is possible to use novel three-dimensional (3D) printing approaches to produce porous metals with an increased area for direct bone-implant contact. This thesis examines strategies to design porous implants that better mimic the structure of human bone, possible coating materials to accelerate early bone growth at the implant interface, and the microscale-to-nanoscale origins of bone formation within the interior of porous materials.
24

An Experimental and Theoretical Analysis of Additive Manufacturing and Injection Molding

Kress, Connor G. January 2015 (has links)
No description available.
25

Analysis of AM Hub Locations for Hybrid Manufacturing in the United States

Strong, Danielle B. 24 May 2017 (has links)
No description available.
26

A Numerical and Experimental Investigation of Steady-State and Transient Melt Pool Dimensions in Additive Manufacturing of Invar 36

Obidigbo, Chigozie Nwachukwu 01 September 2017 (has links)
No description available.
27

Improving the Strength of Binder Jetted Pharmaceutical Tablets Through Tailored Polymeric Binders and Powders

Ma, Da 25 November 2020 (has links)
Additive Manufacturing (AM) provides a unique opportunity for fabrication of personalized medicine, where each oral dosage could be tailored to satisfy specific needs of each individual patient. Binder jetting, an easily scalable AM technique that is capable of processing the powdered raw material used by tablet manufacturers, is an attractive means for producing individualized pharmaceutical tablets. However, due to the low density of the printed specimens and incompatible binder-powder combination, tablets fabricated by this AM technology suffer from poor strength. The research is introducing an additional composition in the binder jetting powder bed (e.g., powdered sugar) could significantly enhance the compressive strength of the as-fabricated tablets, as compared with those tablets fabricated without the additional powder binding agent. However, no previous research demonstrated comprehensive approaches to enhance the poor performance of the 3D printed tablets. Therefore, the goal of this work is to identify processing techniques for improving the strength of binder jetted tablets, including the use of (i) novel jettable polymeric binders (e.g., 4-arm star polyvinylpyrrolidone (PVP), DI water, and different i) weight percentage of sorbitol binder) and (ii) introducing an additional powder binding agent into the powder bed (e.g.., different wt% of powdered sugar). / M.S. / Three-dimensional printing is well-known as 3D printing. 3D printing pills are printed from the 3D printer. As of today, we now stand on the brink of a fourth industrial revolution. By the remarkable technological advancements of the twenty-first century, manufacturing is now becoming digitized. Instead of using a large batch process as traditional, customized printlets with a tailored dose, shape, size, and release characteristics could be produced on- demand. The goal of developing pharmaceutical printing is to reduce the cost of labor, shorten the time of manufacturing, and tailor the pills for patients. And have the potential to cause a paradigm shift in medicine design, manufacture, and use. This paper aims to discuss the current and future potential applications of 3D printing in healthcare and, ultimately, the power of 3D printing in pharmaceuticals.
28

Fabricating Multifunctional Composites via Transfer of Printed Electronics Using Additively Manufactured Sacrificial Tooling

Viar, Jacob Zachary 07 June 2022 (has links)
Multifunctional composites have gained significant interest as they enable the integration of sensing and communication capabilities into structural, lightweight composites. Researchers have explored additive manufacturing processes for creating these structures through selective patterning of electrically conductive materials onto composites. Thus far, multifunctional composite performance has been limited by the conductivity of functional materials used, and the methods of integration have resulted in compromises to both structural and functional performance. Integration methods have also imposed limitations on part geometry due to an inability to adequately deposit conductive material over concave surfaces. Proposed methods of integrating functional devices within composites have been shown to negatively affect their mechanical performance. This work presents a novel method for integrating printed electronics onto the interior surfaces of closed, complex continuous fiber composite structures via the transfer of selectively printed conductive inks from additively manufactured sacrificial tooling to the composite surface. The process is demonstrated by creating multifunctional composites via embossing printed electronics onto structural composites without negatively affecting the mechanical performance of the structure. Additionally, this process expands the ability to pattern devices onto complex surfaces and demonstrates that the transferred functionality is well integrated (adhered) with the composite surface. The process is further validated through the successful completion of two separate case studies. The first is the integration of a functioning strain gauge onto an S-glass/epoxy composite, while a second process demonstration shows a composite surface featuring a band stop filter at the X-band, otherwise known as a frequency selective surface (FSS), to show the process' suitability for high performance, aerospace grade multifunctional composites. / Master of Science / Significant interest has been given in the past few decades to strong, lightweight materials for structural purposes. Among these materials, specific interest has been paid to fiber-reinforced composites, which are made of strong fibers and advanced resins. Recently, researchers have tried to use electrically conductive inks and 3D printing techniques to put antennas and other devices onto composites. These composites could possess additional functions beyond their structural purpose and are therefore called multifunctional composites. So far, the performance of multifunctional composites has been limited by the methods used to add additional functions. These methods often result in a weaker composite material and poor performance of the added devices. In this work, a new method for integrating devices onto complex-shaped composite structures is demonstrated. This is done by printing a mold for a composite, then putting a conductive ink onto the mold and transferring the ink to the composite surface. This process is demonstrated without weakening the composite. Additionally, this process allows researchers to put devices onto complex surfaces and demonstrates that the devices are secured to the composite surface. The process is used to make two separate devices and combine them with a composites surface. The first demonstration is the integration of a functioning strain gauge (used to measure a change in material dimension) onto a structural composite, while a second process demonstration shows a composite surface featuring an electromagnetic filter, otherwise known as a frequency selective surface (FSS), to show the process' suitability for high performance, aerospace grade multifunctional composites.
29

<b>Evaluation of UV Curable and Highly Loaded Inks for Additive Manufacturing of Ceramic Matrix Composites</b>

Joshua Dean Anderson (20373069) 03 December 2024 (has links)
<p dir="ltr">The next generation of advanced aerospace technologies will require strong materials able to withstand high temperatures in high stress environments. Ceramic matrix composites (CMCs) are becoming more popular solutions used to manufacture components for these challenging environments. CMCs take advantage of the high temperature capabilities and erosion resistance of ceramic materials combined with a fiber reinforcement matrix to enhance the strength beyond the capabilities of pure ceramics. Traditionally, CMCs are manufactured using a variety of methods including silicon infiltration, chemical vapor deposition, and polymer pyrolysis, but there are challenges with the available geometries, cost, and time associated with them. Additive manufacturing techniques have shown promise as methods to produce CMCs that can allow for a more tailored design of components and a reduced manufacturing time. However, it is challenging to construct parts with high fiber loadings that can retain their geometric accuracy and compare to more traditional methods of manufacturing CMCs. This research aims to develop and characterize photocurable CMC formulations and CMC inks with high fiber content that can be 3D printed. To do this, photocurable mixtures of preceramic polymer resins were synthesized and filled with pitch and polyacrylonitrile (PAN) based milled carbon fibers from 0-40 wt.%. Additional inks were mixed and tested without photocuring capabilities at solids loadings up to 65 wt.% to evaluate the printing capabilities of highly filled inks. Cure depth of photocurable inks, extrudability of each mixture, rheology of highly filled mixtures, and printing results were obtained. While photocuring CMC inks had a limit to its effectiveness at high solids loadings, a printable mixture with greater than 50 wt.% fiber reinforcements was shown to be viable. The results shown in this paper have significance for future work in additive manufacturing of fiber filled polymer inks and show promise to construct CMCs for aerospace applications.</p>
30

Thermoelectric Energy Harvesting in Harsh Environments and Laser Additive Manufacturing for Thermoelectric and Electromagnetic Materials

Sun, Kan 12 December 2024 (has links)
This dissertation presents innovative research at the intersection of thermoelectric solutions, additive manufacturing, and nuclear safety technology, addressing critical challenges in sensor powering for extreme environments, energy harvesting, and materials fabrication. The research is divided into three key areas, each contributing to advancements in its respective domain. First, a self-powered wireless through-wall data communication system was developed for monitoring nuclear facilities, specifically spent fuel storage dry casks. These facilities require continuous monitoring of internal conditions, including temperature, pressure, radiation, and humidity, under harsh environments characterized by high temperatures and intense radiation without any penetration through their walls. The constructed system integrated four modules: an energy harvester with power management circuits, an ultrasound wireless communication system using high-temperature piezoelectric transducers, electronic circuits for sensing and data transmission, and radiation shielding for electronics. Experimental validation demonstrated that the system harvests over 40 mW of power from thermal flow, withstands gamma radiation exceeding 100 Mrad, and survives temperatures up to 195°C. The system, designed to operate stably for fifty years, enables data transmission every ten minutes, ensuring reliable long-term monitoring for nuclear safety and security. Second, the efficiency of thermoelectric generators (TEGs), unique solid-state devices for thermal-to-electrical energy conversion, was explored through a novel manufacturing approach using selective laser melting (SLM) and direct energy deposition (DED). Conventional TEG fabrication methods have limitations in achieving optimal efficiency due to design and material constraints. SLM-based additive manufacturing offers a scalable solution for creating geometry-flexible and functionally graded thermoelectric materials. This research developed a physical model to simulate the SLM and DED process for fabricating Mg2Si thermoelectric materials with Si doping. The model incorporates conservation equations and accounts for fluid flow driven by buoyancy forces and surface tension, enabling detailed analysis of process parameters such as laser scanning speed and power input. The results provided insights into temperature distribution, powder bed shrinkage, and molten pool dynamics, advancing the understanding and optimization of thermoelectric device fabrication using additive manufacturing. One step further, SLM and DED experiments were carried out to validate the simulation results and testify to the feasibility of applying laser powder bed fusion on semiconductor materials. Third, the research investigates the application of laser additive manufacturing to improve performance and reduce the production costs of magnetic materials. Soft magnetic materials, critical for various industrial applications, are fabricated using DED. The research optimizes DED printing parameters and processes through quality control experiments inspired by the Taguchi method and analysis of variance models. The resulting silicon-iron samples exhibit minimal defects and cracks, demonstrating the feasibility of the approach. Detailed optical and scanning electron microscopy, coupled with magnetic characterization, reveal that the rapid cooling process inherent to laser-based AM enables unique microstructures that enhance magnetic properties. Collectively, this work addresses pressing technological challenges in energy harvesting, materials fabrication, and extreme environment monitoring. The developed systems and methodologies have broad implications for nuclear safety, additive manufacturing, and the efficient utilization of advanced materials. By integrating interdisciplinary approaches and leveraging cutting-edge manufacturing technologies, this dissertation contributes to the advancement of sustainable and resilient solutions for modern engineering challenges. / Doctor of Philosophy / This dissertation explores groundbreaking advancements in energy solutions, manufacturing techniques, and nuclear safety, presenting technologies that address challenges in powering sensors, creating efficient energy harvesters, and developing advanced materials. The research spans three main areas, each providing innovative contributions to these critical fields. The first part focuses on a wireless system that powers itself and communicates data from inside sealed nuclear storage containers. These containers, used to store spent nuclear fuel, must be closely monitored for temperature, pressure, radiation, and humidity to ensure safety. However, traditional monitoring methods cannot penetrate the container walls and withstand the extreme conditions inside. This project developed a system combining four key components: a thermal energy harvester, an ultrasound-based communication method, durable electronic circuits, and radiation shielding. The system successfully harvests energy from the container's heat and uses it to power sensors and transmit data wirelessly every ten minutes. It is designed to operate reliably for fifty years, even under intense radiation and high temperatures, providing long-term solutions for nuclear safety monitoring. The second area investigates thermoelectric generators (TEGs), devices that convert heat into electricity. While TEGs have significant potential, traditional manufacturing techniques limit their efficiency and adaptability. By using cutting-edge laser-based additive manufacturing methods—Selective Laser Melting (SLM) and Direct Energy Deposition (DED)—this research developed new ways to create flexible and efficient thermoelectric materials. Advanced simulations were performed to model the manufacturing process, analyzing how factors like laser speed and power affect the final material properties. These models provided valuable insights into optimizing the process, which were then validated through experimental testing. The findings open the door to scalable and efficient production of thermoelectric devices for various energy applications. The third area addresses the fabrication of magnetic materials, essential for many industrial technologies. Traditional methods of creating magnetic materials can be expensive and prone to defects. This research applied laser-based additive manufacturing to produce soft magnetic materials, such as silicon iron, with fewer flaws and improved performance. By optimizing the printing parameters through experiments and statistical analysis, the team created materials with enhanced magnetic properties. Microscopic analysis revealed that the rapid cooling during manufacturing produced unique structures that contribute to the materials' superior qualities. These advancements have the potential to reduce costs and improve the efficiency of magnetic products in various industries. In summary, this dissertation tackles some of the most pressing challenges in energy, manufacturing, and safety technology. By developing systems that can monitor nuclear storage for decades, improving methods to harvest energy from heat, and creating better magnetic materials, this work paves the way for safer and more efficient solutions to modern engineering problems. These innovations are not only critical for nuclear safety but also hold promise for broader applications in sustainable energy and advanced manufacturing, contributing to a safer and more efficient future for industries worldwide.

Page generated in 0.0585 seconds