• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 394
  • 94
  • 79
  • 76
  • 73
  • 33
  • 27
  • 15
  • 9
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 960
  • 151
  • 142
  • 95
  • 93
  • 92
  • 92
  • 90
  • 89
  • 85
  • 78
  • 76
  • 74
  • 73
  • 73
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Computational Fluid Dynamics (CFD) simulations of dilute fluid-particle flows in aerosol concentrators

Hari, Sridhar 17 February 2005 (has links)
In this study, commercially available Computational Fluid Dynamics (CFD) software, CFX-4.4 has been used for the simulations of aerosol transport through various aerosol-sampling devices. Aerosol transport was modeled as a classical dilute and dispersed two-phase flow problem. Eulerian-Lagrangian framework was adopted wherein the fluid was treated as the continuous phase and aerosol as the dispersed phase, with a one-way coupling between the phases. Initially, performance of the particle transport algorithm implemented in the code was validated against available experimental and numerical data in the literature. Code predictions were found to be in good agreement against experimental data and previous numerical predictions. As a next step, the code was used as a tool to optimize the performance of a virtual impactor prototype. Suggestions on critical geometrical details available in the literature, for a virtual impactor, were numerically investigated on the prototype and the optimum set of parameters was determined. Performance curves were generated for the optimized design at various operating conditions. A computational model of the Linear Slot Virtual Impactor (LSVI) fabricated based on the optimization study, was constructed using the worst-case values of the measured geometrical parameters, with offsets in the horizontal and vertical planes. Simulations were performed on this model for the LSVI operating conditions. Behavior of various sized particles inside the impactor was illustrated with the corresponding particle tracks. Fair agreement was obtained between code predictions and experimental results. Important information on the virtual impactor performance, not known earlier, or, not reported in the literature in the past, obtained from this study, is presented. In the final part of this study, simulations on aerosol deposition in turbulent pipe flow were performed. Code predictions were found to be completely uncorrelated to experimental data. The discrepancy was traced to the performance of the code's turbulent dispersion model. A detailed literature survey revealed the inherent technical deficiencies in the model, even for particle dispersion. Based on the results of this study, it was determined that while the code can be used for simulating aerosol transport under laminar flow conditions, it is not capable of simulating aerosol transport under turbulent flow conditions.
382

Investigation of the optical and cloud forming properties of pollution, biomass burning, and mineral dust aerosols

Lee, Yong Seob 16 August 2006 (has links)
This dissertation describes the use of measured aerosol size distributions and size-resolved hygroscopic growth to examine the physical and chemical properties of several particle classes. The primary objective of this work was to investigate the optical and cloud forming properties of a range of ambient aerosol types measured in a number of different locations. The tool used for most of these analyses is a differential mobility analyzer / tandem differential mobility analyzer (DMA / TDMA) system developed in our research group. To collect the data described in two of the chapters of this dissertation, an aircraft-based version of the DMA / TDMA was deployed to Japan and California. The data described in two other chapters were conveniently collected during a period when the aerosol of interest came to us. The unique aspect of this analysis is the use of these data to isolate the size distributions of distinct aerosol types in order to quantify their optical and cloud forming properties. I used collected data during the Asian Aerosol Characterization Experiment (ACE-Asia) to examine the composition and homogeneity of a complex aerosol generated in the deserts and urban regions of China and other Asian countries. An aircraft-based TDMA was used for the first time during this campaign to examine the size-resolved hygroscopic properties of the aerosol. The Asian Dust Above Monterey (ADAM-2003) study was designed both to evaluate the degree to which models can predict the long-range transport of Asian dust, and to examine the physical and optical properties of that aged dust upon reaching the California coast. Aerosol size distributions and hygroscopic growth were measured in College Station, Texas to investigate the cloud nucleating and optical properties of a biomass burning aerosol generated from fires on the Yucatan Peninsula. Measured aerosol size distributions and size-resolved hygroscopicity and volatility were used to infer critical supersaturation distributions of the distinct particle types that were observed during this period. The predicted cloud condensation nuclei concentrations were used in a cloud model to determine the impact of the different aerosol types on the expected cloud droplet concentration. RH-dependent aerosol extinction coefficients were also calculated.
383

An Investigation On Role Of Surface Reflectance And Aerosol Model In Remote Sensing Of Aerosols From Moderate-Resolution Imaging Spectroradiometer Over India

Jethva, Hiren, Satheesh, S K 07 1900 (has links)
The Moderate-resolution Imaging Spectroradiometer (MODIS) onboard NASA’s Terra and Aqua satellites have provided a global distribution of aerosols. The space-based inversion of MODIS measurements requires assumption about the surface and aerosol properties, both are highly heterogeneous in space and time. This thesis has investigated the role of surface reflectance and aerosol properties on the retrieval of aerosols from MODIS over the Indian region. The aerosol properties retrieved by MODIS including total aerosol optical depth (AOD) and aerosol fine mode fraction (AFMF, fractional contribution of fine mode aerosols in the total AOD) were compared with that obtained from Aerosol Robotic Network (AERONET) at Kanpur (26.45◦N,80.35◦E), Indo-Gangetic Basin, northern India. This region is a special region for the study of aerosols as it offers strong aerosol seasonality, where the region is influenced by dust aerosols during pre-monsoon (March to June) and dominated by the fine mode particles in winter (November to February). The MODIS Collection 004 (C004) aerosol products systematically overestimated AOD in the presence of dust and underestimated when fine particles were dominant. The errors in the retrieval of dust AOD were correlated with the apparent reflectance at 2.1 µm, from which the surface reflectance in the visible channels (0.47 µm and 0.66 µm) were estimated using the “dark target” spectral correlation method. The error in the retrieval of AOD were also found to be large in the scattering angle range 120◦150◦, where the scattering properties of the non-spherical dust aerosols differ from that of the assumed spherical particles. AFMF of C004 was found to be highly biased to fine mode at Kanpur. The Collection 005 (C005) aerosol retrieval of the second-generation aerosol algorithm, however, showed improved retrieval of spectral AOD, which is likely to be attributed to the use of updated aerosol models and parameterized surface reflectance. In contrast to the C004 products, fine AOD and fine-model weighting (FMW) of C005 were biased very low at Kanpur and also over the greater Indian land region. This has indicated that the inversion of the space-based MODIS measurements is non-unique in which an improper combination of surface reflectance and aerosol model provide more accurate retrieval of the total aerosol optical depth. The surface reflectance relationships between the visible and shortwave-infrared 2.1 µm channels derived from the actual measurements of the surface reflectance using a spectroradiometer onboard an aircraft over Bangalore (12.95◦N,77.65◦E) in the southern India were found to have higher slope and intercept than that assumed by the MODIS algorithm over the same region. The high spectral correlations between the measured reflectance at longer wavelengths indicated some potential to estimate the surface reflectance at these wavelengths which needs further investigation. An experiment on the retrieval of aerosols carried out with several combinations of aerosol models and visible surface reflectance clearly shown that the surface reflectance in the visible channels assumed in the MODIS aerosol algorithm should be increased from its current parameterization in order to retrieve more accurate total as well as size-segregated aerosol optical properties at Kanpur and also over the greater Indian land region. In addition to the visible channels, inclusion of longer wavelengths in the aerosol inversion would likely improve the accuracy of retrieval over land by resolving the spectral dependence of aerosols. This in turn can help in separating the anthropogenic and natural aerosols in the total aerosol loading.
384

Qualitative und quantitative Bestimmung von Russaerosolen und anderen Feinstäuben auf Basis der Raman-Spektroskopie

Nalpantidis, Konstantinos January 2009 (has links)
Zugl.: Bochum, Univ., Diss., 2009
385

Intercomparison of shortwave radiative transfer schemes in global aerosol modeling

Randles, Cynthia A., Kinne, Stefan, Myhre, Gunnar, Schulz, Michael, Stier, Philip, Fischer, Jürgen, Doppler, Lionel, Highwood, Eleanor, Ryder, Claire, Harris, Bethan, Huttunen, Jani, Ma, Y., Pinker, Rachel T., Mayer, Bernhard, Neubauer, David, Hitzenberger, Regina, Oreopoulos, Lazaros, Lee, Dongmin, Pitari, Giovanni, Di Genova, Glauco, Quaas, Johannes, Rose, Fred G., Kato, Seiji, Rumbold, Steve T., Vardavas, Ilias, Hatzianastassiou, Nikos, Matsoukas, Christos, Yu, Hongbin, Zhang, F., Zhang, Hua, Lu, P. 25 August 2015 (has links) (PDF)
In this study we examine the performance of 31 global model radiative transfer schemes in cloudfree conditions with prescribed gaseous absorbers and no aerosols (Rayleigh atmosphere), with prescribed scatteringonly aerosols, and with more absorbing aerosols. Results are compared to benchmark results from high-resolution, multiangular line-by-line radiation models. For purely scattering aerosols, model bias relative to the line-by-line models in the top-of-the atmosphere aerosol radiative forcing ranges from roughly −10 to 20 %, with over- and underestimates of radiative cooling at lower and higher solar zenith angle, respectively. Inter-model diversity (relative standard deviation) increases from ~ 10 to 15% as solar zenith angle decreases. Inter-model diversity in atmospheric and surface forcing decreases with increased aerosol absorption, indicating that the treatment of multiple-scattering is more variable than aerosol absorption in the models considered. Aerosol radiative forcing results from multi-stream models are generally in better agreement with the line-by-line results than the simpler two-stream schemes. Considering radiative fluxes, model performance is generally the same or slightly better than results from previous radiation scheme intercomparisons. However, the inter-model diversity in aerosol radiative forcing remains large, primarily as a result of the treatment of multiple-scattering. Results indicate that global models that estimate aerosol radiative forcing with two-stream radiation schemes may be subject to persistent biases introduced by these schemes, particularly for regional aerosol forcing.
386

Aerosolization of microorganisms and risk of infection from reuse of wastewater residuals

Tanner, Benjamin Dennis. January 2004 (has links)
Three experiments were conducted to characterize the concentration of microorganisms in biosolids, the plume of aerosols created during land application of biosolids and the occupational risk of infection due to pathogens aerosolized during land application of biosolids in the United States. In all, more than three-hundred air samples were collected immediately downwind of biosolids applications throughout the United States using liquid impingers, and more than one-hundred air samples were collected downwind of microbially seeded, land applied water, which served as a conservative model system of aerosol generation. The novel model system made it possible to calculate the flux of microorganisms through a virtual plane defined by air samplers in vertical and horizontal arrays, located immediately downwind of a passing spray applicator. The rate of aerosolization during land application of biosolids near Tucson, Arizona, was calculated to be less than 33 plaque forming units (PFU) of coliphage and 10 colony forming units (CFU) of coliform bacteria per meter traveled by the spray applicator. Rates of aerosolization from the model system were shown to be much greater. To assess the risk to occupational health from bioaerosols generated during land application of biosolids, coliform bacteria, coliphages, and heterotrophic plate count (HPC) bacteria were enumerated from air and biosolids at 10 land application sites throughout the nation. The method of land application strongly influenced aerosolization, while relative humidity, temperature and wind speed showed limited correlation to concentrations of fecal indicator microorganisms in air. Occupational risks of infection and illness from aerosolized Salmonella and enteroviruses were calculated for a variety of land application scenarios. Realistic exposure scenarios carried occupational risks of Salmonella infection ranging from of 0.0001% to 0.013% per year. The corresponding occupational risk of infection from enteroviruses, using coxsackievirus A-21 as a model, ranged from 0.78% to 2.1% per year, depending on the type of activity performed by the worker. In addition, samples of biosolids from the Southwestern United States were characterized to provide up-to-date information about pathogens in biosolids for environmental regulators, biosolids producers, researchers, and public health agencies.
387

Understanding of metered dose inhaler therapy by GOPC patients: a survey at Tsing Yi Town Clinic

Cheung, Tung-lung., 張東龍. January 2004 (has links)
published_or_final_version / Medical Sciences / Master / Master of Medical Sciences
388

Characteristics of Regional Aerosols: Southern Arizona and Eastern Pacific Ocean

Prabhakar, Gouri January 2014 (has links)
Atmospheric aerosols impact the quality of our life in many direct and indirect ways. Inhalation of aerosols can have harmful effects on human health. Aerosols also have climatic impacts by absorbing or scattering solar radiation, or more indirectly through their interactions with clouds. Despite a better understanding of several relevant aerosol properties and processes in the past years, they remain the largest uncertainty in the estimate of global radiative forcing. The uncertainties arise because although aerosols are ubiquitous in the Earth's atmosphere they are highly variable in space, time and their physicochemical properties. This makes in-situ measurements of aerosols vital in our effort towards reducing uncertainties in the estimate of global radiative forcing due to aerosols. This study is an effort to characterize atmospheric aerosols at a regional scale, in southern Arizona and eastern Pacific Ocean, based on ground and airborne observations of aerosols. Metals and metalloids in particles with aerodynamic diameter (Dp) smaller than 2.5μm are found to be ubiquitous in southern Arizona. The major sources of the elements considered in the study are identified to be crustal dust, smelting/mining activities and fuel combustion. The spatial and temporal variability in the mass concentrations of these elements depend both on the source strength and meteorological conditions. Aircraft measurements of aerosol and cloud properties collected during various field campaigns over the eastern Pacific Ocean are used to study the sources of nitrate in stratocumulus cloud water and the relevant processes. The major sources of nitrate in cloud water in the region are emissions from ships and wildfires. Different pathways for nitrate to enter cloud water and the role of meteorology in these processes are examined. Observations of microphysical properties of ambient aerosols in ship plumes are examined. The study shows that there is an enhancement in the number concentration of giant cloud condensation nuclei (Dp>2 μm) in ship plumes relative to the unperturbed background regions over the ocean.
389

Application of Digital Micromirror Devices to Atmospheric Lidar Measurement and Calibration

Anderton, Blake Jerome January 2014 (has links)
A novel design for atmospheric laser radar (lidar) is presented, implementing a digital micromirror device (DMD) for use in (A) aligning transmitter and receiver boresight angles and in (B) field-of-view (FOV) control of such "DMD lidar" instruments. A novel technique is presented to extract the transmitter-receiver overlap-compensation function from ratioing data from different FOVs in the same pointing direction. DMD lidar design considerations and trades are surveyed. Principles of modeling DMD lidar performance are introduced and implemented in a performance-predictive system simulation with data-validated results. Operational capabilities of DMD lidar are demonstrated through a hardware prototype with field measurement examples. Additional capabilities offered by integrating DMD within lidar and other optical systems are presented, including single-pixel Radon-imaging techniques.
390

Development Of A Dust Deposition Forecast Model For A Mine Tailings Impoundment

Stovern, Michael Kelly January 2014 (has links)
Wind erosion, transport and deposition of particulate matter can have significant impacts on the environment. It is observed that about 40% of the global land area and 30% of the earth's population lives in semiarid environments which are especially susceptible to wind erosion and airborne transport of contaminants. With the increased desertification caused by land use changes, anthropogenic activities and projected climate change impacts windblown dust will likely become more significant. An important anthropogenic source of windblown dust in this region is associated with mining operations including tailings impoundments. Tailings are especially susceptible to erosion due to their fine grain composition, lack of vegetative coverage and high height compared to the surrounding topography. This study is focused on emissions, dispersion and deposition of windblown dust from the Iron King mine tailings in Dewey-Humboldt, Arizona, a Superfund site. The tailings impoundment is heavily contaminated with lead and arsenic and is located directly adjacent to the town of Dewey-Humboldt. The study includes in situ field measurements, computational fluid dynamic modeling and the development of a windblown dust deposition forecasting model that predicts deposition patterns of dust originating from the tailings impoundment. Two instrumented eddy flux towers were setup on the tailings impoundment to monitor the aeolian and meteorological conditions. The in situ observations were used in conjunction with a computational fluid dynamic (CFD) model to simulate the transport of windblown dust from the mine tailings to the surrounding region. The CFD model simulations include gaseous plume dispersion to simulate the transport of the fine aerosols, while individual particle transport was used to track the trajectories of larger particles and to monitor their deposition locations. The CFD simulations were used to estimate deposition of tailings dust and identify topographic mechanisms that influence deposition. Simulation results indicated that particles preferentially deposit in regions of topographic upslope. In addition, turbulent wind fields enhanced deposition in the wake region downwind of the tailings. This study also describes a deposition forecasting model (DFM) that can be used to forecast the transport and deposition of windblown dust originating from a mine tailings impoundment. The DFM uses in situ observations from the tailings and theoretical simulations of aerosol transport to parameterize the model. The model was verified through the use of inverted-disc deposition samplers. The deposition forecasting model was initialized using data from an operational Weather Research and Forecasting (WRF) model and the forecast deposition patterns were compared to the inverted-disc samples through gravimetric, chemical composition and lead isotopic analysis. The DFM was verified over several month-long observing periods by comparing transects of arsenic and lead tracers measured by the samplers to the DFM PM₂₇ forecast. Results from the sampling periods indicated that the DFM was able to accurately capture the regional deposition patterns of the tailings dust up to 1 km. Lead isotopes were used for source apportionment and showed spatial patterns consistent with the DFM and the observed weather conditions. By providing reasonably accurate estimates of contaminant deposition rates, the DFM can improve the assessment of human health impacts caused by windblown dust from the Iron King tailings impoundment.

Page generated in 0.0592 seconds