• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 394
  • 94
  • 79
  • 76
  • 73
  • 33
  • 27
  • 15
  • 9
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 960
  • 151
  • 142
  • 95
  • 93
  • 92
  • 92
  • 90
  • 89
  • 85
  • 78
  • 76
  • 74
  • 73
  • 73
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

Optical properties of mineral dust aerosol including analysis of particle size, composition, and shape effects, and the impact of physical and chemical processing

Alexander, Jennifer Mary 01 July 2015 (has links)
Atmospheric mineral dust has a large impact on the earth’s radiation balance and climate. The radiative effects of mineral dust depend on factors including, particle size, shape, and composition which can all be extremely complex. Mineral dust particles are typically irregular in shape and can include sharp edges, voids, and fine scale surface roughness. Particle shape can also depend on the type of mineral and can vary as a function of particle size. In addition, atmospheric mineral dust is a complex mixture of different minerals as well as other, possibly organic, components that have been mixed in while these particles are suspended in the atmosphere. Aerosol optical properties are investigated in this work, including studies of the effect of particle size, shape, and composition on the infrared (IR) extinction and visible scattering properties in order to achieve more accurate modeling methods. Studies of particle shape effects on dust optical properties for single component mineral samples of silicate clay and diatomaceous earth are carried out here first. Experimental measurements are modeled using T-matrix theory in a uniform spheroid approximation. Previous efforts to simulate the measured optical properties of silicate clay, using models that assumed particle shape was independent of particle size, have achieved only limited success. However, a model which accounts for a correlation between particle size and shape for the silicate clays offers a large improvement over earlier modeling approaches. Diatomaceous earth is also studied as an example of a single component mineral dust aerosol with extreme particle shapes. A particle shape distribution, determined by fitting the experimental IR extinction data, used as a basis for modeling the visible light scattering properties. While the visible simulations show only modestly good agreement with the scattering data, the fits are generally better than those obtained using more commonly invoked particle shape distributions. The next goal of this work is to investigate if modeling methods developed in the studies of single mineral components can be generalized to predict the optical properties of more authentic aerosol samples which are complex mixtures of different minerals. Samples of Saharan sand, Iowa loess, and Arizona road dust are used here as test cases. T-matrix based simulations of the authentic samples, using measured particle size distributions, empirical mineralogies, and a priori particle shape models for each mineral component are directly compared with the measured IR extinction spectra and visible scattering profiles. This modeling approach offers a significant improvement over more commonly applied models that ignore variations in particle shape with size or mineralogy and include only a moderate range of shape parameters. Mineral dust samples processed with organic acids and humic material are also studied in order to explore how the optical properties of dust can change after being aged in the atmosphere. Processed samples include quartz mixed with humic material, and calcite reacted with acetic and oxalic acid. Clear differences in the light scattering properties are observed for all three processed mineral dust samples when compared to the unprocessed mineral dust or organic salt products. These interactions result in both internal and external mixtures depending on the sample. In addition, the presence of these organic materials can alter the mineral dust particle shape. Overall, however, these results demonstrate the need to account for the effects of atmospheric aging of mineral dust on aerosol optical properties. Particle shape can also affect the aerodynamic properties of mineral dust aerosol. In order to account for these effects, the dynamic shape factor is used to give a measure of particle asphericity. Dynamic shape factors of quartz are measured by mass and mobility selecting particles and measuring their vacuum aerodynamic diameter. From this, dynamic shape factors in both the transition and vacuum regime can be derived. The measured dynamic shape factors of quartz agree quite well with the spheroidal shape distributions derived through studies of the optical properties.
422

Environmental Resuspension and Health Impacts of Radioactive Particulate Matter

Marshall, Shaun A. 20 May 2020 (has links)
Surface-bound particulates containing radionuclides in the environment can become airborne through the process of resuspension. Once airborne, these radionuclides can be inhaled or ingested to deliver an internal dose of ionizing radiation. To that end, the resuspension factor method is a powerful tool for predicting a person's exposure to airborne particles from surface contaminations, and therefore is used to determine protective and intervening measures. The resuspension factor is calculated as the ratio measured airborne to surface mass concentration and has been found to generally decrease exponentially with time. Current models of the resuspension factor are empirical and have failed to predict recent measurement, motivating a stronger basis and physical model for the system. Additionally, federal guidances conservatively suggest an unphysical model of particulate radioactivity impact wherein the entirety of the radiation is absorped. For this dissertation, two- and three-compartment catenary models were derived which build on measured resuspension rate constants under various influences. These models were fit to a set of historic observations of resuspension factors using an instrumental uncertainty-weighting to resolve the large variances early in time which otherwise inflate calculations. When compared to previous resuspension models, our physical models better fit the data achieving reduced-chi-squared closer to 1. An experiment was undertaken to validate our basic environment resuspension models in an urban environment without wind. A resuspension chamber is constructed by placing an acrylic tube atop a poured concrete surface and lowering a low-volume air sampler head from above. Europium oxide powder was dispersed upon the surface or from above the air sampling height to emulate ideal compartmentalized release scenarios, and air is sampled on an hourly, daily, or weekly basis. Sampler filters then were evaluated for Europium content using neutron activation and gamma spectroscopy. Hourly measurements following airborne release are within an order of magnitude of early-timeframe historic resuspension factors (~10^−6 m^−1), whereas daily and weekly measurements from surface release demonstrate a gradual decrease in resuspension factor (∼10^−8 m^−1). These results support a need to critically assess the resuspension factor definition and its relationship to "initial suspension" and the indoor background, non-anthropogenic resuspension. Finally, a simulated model was generated to demonstrate loss of alpha radiation from relevant transuranic radioparticles. This was accomplished using the Geant4 Monte Carlo particle transport code. This basic model demonstrated a clear loss of average intensity and energy of exiting particles which are both directly related to the absorped dose. The data shows a loss from 10 to 90% of intensity to occur at particle sizes approaching the range of alphas within them, and a loss of roughly half the initial alpha energy at around the same particle sizes. The results establish a first-order baseline for a particulate self-absorption model which complement existing dosimetry models for inhaled radionuclides.
423

Vyhodnocení kontaminace pracovního prostředí aerosoly řezných kapalin při soustružení kovů / Evaluation of cutting fluids aerosol contamination of working environment during metal turning

Svoboda, Svetozár January 2017 (has links)
The thesis deals with the contamination of the workspace with a liquid aerosol, which is generated by scattering and evaporation of the cooling fluid. Cooling fluid are primarily intended to lubricate, cool and clean the tool and the workpiece, but the unwanted side effect is the formation of a liquid aerosol that holds in the air of the workspace. In such a contaminated work environment, the operator is exposed to a certain dose of a liquid aerosol that causes dermatological and respiratory problems. The topic of the thesis was to find out the number of particles of liquid aerosol that arises under varying working conditions and its dispersion in space. This amount was determined by image analysis using a high-speed camera.
424

Laboratory Simulation and Evaluation of Aerosol Particles Penetration, Deposition and Removal Processes in Sheltering Houses Equipped with Ventilation Systems / 換気システムを備えた待避家屋におけるエアロゾル粒子の侵入、沈積および除去プロセスの実験室シミュレ-ションと評価

Wenlu, Wang 23 September 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22764号 / 工博第4763号 / 新制||工||1745(附属図書館) / 京都大学大学院工学研究科都市環境工学専攻 / (主査)教授 米田 稔, 教授 橋本 訓, 准教授 福谷 哲 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
425

OPTIMIZING NASAL CANNULAS FOR INFANTS USING COMPUTATIONAL FLUID DYNAMICS

El-Achwah, Ahmad, Mr. 01 January 2019 (has links)
Aerosolized medications can potentially be delivered to the lungs of infants through a nasal cannula interface. However, nose-to-lung delivery technologies currently allow for ~1% of the loaded dose to reach an infant’s lungs. Conventional dry powder inhalers (DPI) are superior to other types of inhalers in many ways. However, passive DPIs that operate based on user inhalation and require large volumes of airflow are not applicable to infants. To overcome this challenge, positive pressure DPIs have been developed that enable aerosol delivery to infants. Unless an adequate nasal interface is used with these devices, a significant amount of drug will still be lost. Computational fluid dynamics (CFD) provide a method to assess the performance of a nasal cannula interface and optimize its performance. In this study, a CFD model was first experimentally validated using the low-Reynolds number k-ω turbulence model, then used to assess and optimize several conical diffuser cannula designs for infants. The performance of a cannula depends primarily on two requirements: the amount deposited particles and the cannula’s volume. It was found that 90 and 100 mm long simple diffusers achieved the necessary deposition and volume requirements when operated at 3 and 5 liters per minute, respectively. Additionally, including clean sheath co-flow air with the 70 mm long diffuser achieved the targeted performance requirements. Inclusion of recent advancements in the field with the recommended cannula designs is likely to improve pharmaceutical aerosol delivery to infants using the nose-to-lung approach.
426

Shape, Size, Chemistry, and Mineralogy of Nano- and Micro-particles Entrapped Within Ancient Antarctic Ice Measured Using Transmission Electron Microscopy (TEM)

Bradley, Cole E. January 2021 (has links)
No description available.
427

Characterization of Ultrafine Particles from Open-Source Desktop Three-Dimensional Printers with Multiple Filaments

Fang, Runcheng 24 May 2022 (has links)
No description available.
428

A Geographical Comparison of the Relationship Between Aerosol Optical Depth and Fine Particulate Matter in Indiana / A Geographic Comparison between AOD and PM2.5 in Indiana

Douglas, April D. 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This study looked at the time period of June through mid-October, 2013, based on the results of earlier studies that the strongest correlation between the PM2.5 and AOD data sets occurs during the summer and fall. Terra satellite data was used in this study due to availability of images for the geographic area of the state of Indiana during the time period of the study. PM2.5 measurements from 12 IDEM continuous monitoring sites, which were collected at noon local time, were compared with MODIS AOD data. Despite the limitations of useful data and smaller data sets, this study shows encouraging results, and illustrates that there is a relationship between remotely sensed MODIS AOD data and fine particulate matter (PM2.5) data collected from ground sensors within the geographic region of the state of Indiana. It is believed that this topic should be studied further and expanded upon.
429

Modeling and experimenting a novel inverted drift tube device for improved mobility analysis of aerosol particles

Nahin, Md Minal 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Ion Mobility Spectrometry (IMS) is an analytical technique for separation of charged particles in the gas phase. The history of IMS is not very old, and in this century, the IMS technique has grown rapidly in the advent of modern instruments. Among currently available ion mobility spectrometers, the DTIMS, FAIMS, TWIMS, DMA are notable. Though all the IMS systems have some uniqueness in case of particle separation and detection, however, all instruments have common shortcomings. They lack in resolution, which is independent of mobility of different charged particles and they are not able to separate bigger particles (20 120 nm) with good accuracy. The work presented here demonstrates a new concept of IMS technique at atmospheric pressure which has a resolution much higher than that of the currently available DTIMS (Drift Tube Ion Mobility Spectrometry) instruments. The unique feature of this instrument is the diffusion auto-correction. Being tunable, It can separate the wide range of particles of different diameters. The working principle of this new IMS technique is different from the typical DTIMS and to simply put, it can be considered as an inversion of commonly used technique, so termed as Inverted Drift Tube (IDT).The whole work performed here can be divided into three major phases. In the first phase, the analytical solution was derived for two new separation techniques: IPF (Intermittent push flow) and NSP (Nearly stopping potential) separations. In the next phase, simulations were done to show the accuracy of the analytical solution. An ion optics simulator software called SIMION 8.1 was used for conducting the simulation works. These simulations adopted the statistical diffusion (SDS) collision algorithm to emulate the real scenario in gas phase more precisely. In the last phase, a prototype of experimental setup was built. The experimental results were then validated by simulated results.
430

Mechanism of ceramic deposition by aerosol deposition method / エアロゾルデポジション法によるセラミック成膜メカニズム

Naoe, Kazuaki 24 September 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19307号 / 工博第4104号 / 新制||工||1633(附属図書館) / 32309 / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 田中 功, 教授 中村 裕之, 教授 邑瀬 邦明 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM

Page generated in 0.0473 seconds