• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 394
  • 94
  • 79
  • 76
  • 73
  • 33
  • 27
  • 15
  • 9
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 960
  • 151
  • 142
  • 95
  • 93
  • 92
  • 92
  • 90
  • 89
  • 85
  • 78
  • 76
  • 74
  • 73
  • 73
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
571

Messverfahren zur Bestimmung der Partikelanzahlkonzentration in Umweltaerosolen

Hillemann, Lars 25 September 2013 (has links) (PDF)
Die natürliche Umgebungsluft enthält Aerosolpartikel, deren Größe von wenigen Nanometern bis zu einigen Mikrometern reicht. Insbesondere anthropogenen ultrafeinen Partikeln, die kleiner als 100 nm sind, werden negative Wirkungen auf die menschliche Gesundheit zugeschrieben. Die gravimetrische Messung der Partikelmassekonzentration erfasst ultrafeine Partikel nur ungenügend, da die Masse dieser Partikel sehr gering ist. Deutlich empfindlicher gelingt die Quantifizierung ultrafeiner Partikel durch die Messung der Partikelanzahlkonzentration. Die Arbeit beschreibt ein Verfahren zur Messung der Anzahlkonzentration von Partikeln in Umweltaerosolen. Es verknüpft die elektrische Aufladung der Partikel mit deren Klassierung im elektrischen Feld und ihre Mengenbestimmung anhand der elektrischen Ladung. Mittels des entwickelten Sensormodells gelingt die Verbindung der gemessenen Rohdaten mit der Anzahlgrößenverteilung der Partikel durch eine Kernfunktion in einer Fredholmschen Integralgleichung erster Art. Zur Dateninversion wird diese Gleichung in diskreter Form als lineares Gleichungssystem genutzt. Dessen Koeffizienten bilden die Kernmatrix, welche mit einer neu entwickelten Methode experimentell bestimmt wird. Vergleichsmessungen zeigen eine gute Übereinstimmung des Verfahrens mit Referenzverfahren der Aerosolmesstechnik und unterstreichen die Eignung des Verfahrens zur Partikelquantifizierung in Umweltmessnetzen.
572

Characterization of Pre-Monsoon Aerosol and Aerosol-Cloud-Rainfall Interactions in Central Nepal

SHRESTHA, PRABHAKAR January 2011 (has links)
<p>This dissertation presents the first findings of aerosol indirect effect in the foothills of the Himalayas (Central Nepal), through a systematic research approach involving satellite data analysis, field campaign, growth factor estimation and numerical modeling studies. Satellite retrieved aerosol optical depth data over the region were first used to identify the dominant modes of spatial/temporal variability of aerosols in the region. Based on the observed dominant spatial mode of aerosol in the pre-monsoon season (Shrestha and Barros 2010, ACP), a field campaign was organized under the Joint Aerosol Monsoon Experiment (JAMEX09) at Dhulikhel and Besisahar to simultaneously measure dry and ambient aerosols size spectra using SMPS and chemical composition using filters (Shrestha et al. 2010, ACP). The diurnal cycle of aerosol number concentration exhibited a consistent peak in the morning and evening period, which was found to be associated with increase in local emission and the delay in ventilation of aerosol through upslope flows and mixing (inferred from an idealized numerical study over Besisahar). The aerosol size distribution was mostly unimodal at night and bimodal during the day, with a consistent larger mode around 100nm and a smaller mode located around 20nm. The chemical composition of PM2.5 was dominated by organic matter at both sites. Organic carbon (OC) comprised the major fraction (64~68%) of the aerosol concentration followed by ionic species (24~26%, mainly and ). Elemental Carbon (EC) compromised 7~10% of the total composition and 27% of OC was found to be water soluble at both sites. The aerosol number concentration increased and decreased in the presence of synoptic scale aerosol plumes and after rainfall events respectively.</p><p>A simple model based on Köhler theory was used to explain the observed growth factor using an assumption of (NH4)2SO4 aqueous solution including the presence of slightly soluble organic compounds (SSC) with an insoluble core as a function of molality and mass-fraction. The measured growth factors suggest that the aerosols are in metastable state due to the strong diurnal cycle of relative humidity (RH). The bulk hygroscopic parameter estimated from the DGF and chemical composition of aerosols suggests less hygroscopic aerosols at both locations as compared to previous studies. The dry aerosol size distribution and the bulk hygroscopic parameters were used to estimate the cloud condensation nuclei (CCN) spectrum, which was vertically scaled up to lifting condensation level (LCL) assuming that the shape and chemical properties of aerosol remains unchanged (Shrestha et al. 2011, submitted to JGR). Finally, these regional CCN spectra for polluted and clean conditions as well as standard continental and marine spectra used in numerical weather prediction models (Cohard et al. 1998) were used to probe CCN sensitivity for a pre-monsoon storm system in Central Nepal during JAMEX09. A significant shift in the maxima of the accumulated precipitation was observed between the continental aerosol spectra (Cohard et al. 1998) and the polluted spectra for Dhulikhel. This shift caused the displacement of rainfall maximum away from the Kulekhani water reserve catchment, which is key to hydropower in Nepal. Detailed analysis of the simulations suggests that simgnificant differences in the space-time variability and intensity of precipitation, if not areally integrated amounts, can be explained by differences in the timing and intensity of latent heat release and absorption due to freezing/melting of hydrometers and evaporative cooling of droplets, strengthening cold pool formation and associated circulations. This numerical study provides the first look on the aerosol indirect effect over Nepal for a single pre-monsoon rainfall event, and how aerosols can potentially affect the precipitation distribution (to be submitted to JGR). In addition, it shows the importance of using regionally consistent CCN spectra in model parameterizations of aerosol-cloud interactions. At local places, the differences in simulated precipitation between marine, JAMEX09 clean and polluted air spectra were smaller (up tp ± 50%) than the difference between those simulations and the standard continental aerosol spectra (±200%).</p> / Dissertation
573

Ambient Submicron Particles In North America: Their Sources, Fate, and Impact

Peltier, Richard Edward 04 October 2007 (has links)
This thesis improves the understanding of the fate and transport of aerosols in North America. Aerosols play an important role climate modification, visibility, human health, and regulatory compliance. Through multiple aircraft-based and ground-based field campaigns, in situ ambient bulk aerosol concentrations will be determined across geographically diverse regions of the United States. By examining aerosol composition - specifically, inorganic ions and water-soluble organic carbon - as they are transported across the Pacific Ocean, we can observe background concentrations that may contribute to aerosol loading observed in many US communities. Furthermore, the aerosol continues to be modified by anthropogenic and biogenic emissions, dry and wet deposition, and secondary formation and transformation as it is transported across the continent. To capture some of these dynamic changes, aerosol will be extensively measured near the east coast of the US and Canada, and results may show significant anthopogenic, biogenic, and secondary transformation. Many results from the Northeastern United States and Southeastern Canada will be presented, and a special case study discussing acid-catalyzed formation of secondary organic aerosol in the region of northern Georgia, US is discussed. Lastly, through laboratory- and field-based instrument development, a commonly-deployed instrument is modified for improved measurement of organic carbon and results are presented herein.
574

Computational fluid dynamics (CFD) simulations of aerosol in a u-shaped steam generator tube

Longmire, Pamela 15 May 2009 (has links)
To quantify primary side aerosol retention, an Eulerian/Lagrangian approach was used to investigate aerosol transport in a compressible, turbulent, adiabatic, internal, wall-bounded flow. The ARTIST experimental project (Phase I) served as the physical model replicated for numerical simulation. Realizable k-ε and standard k-ω turbulence models were selected from the computational fluid dynamics (CFD) code, FLUENT, to provide the Eulerian description of the gaseous phase. Flow field simulation results exhibited: a) onset of weak secondary flow accelerated at bend entrance towards the inner wall; b) flow separation zone development on the convex wall that persisted from the point of onset; c) centrifugal force concentrated high velocity flow in the direction of the concave wall; d) formation of vortices throughout the flow domain resulted from rotational (Dean-type) flow; e) weakened secondary flow assisted the formation of twin vortices in the outflow cross section; and f) perturbations induced by the bend influenced flow recovery several pipe diameters upstream of the bend. These observations were consistent with those of previous investigators. The Lagrangian discrete random walk model, with and without turbulent dispersion, simulated the dispersed phase behavior, incorrectly. Accurate deposition predictions in wall-bounded flow require modification of the Eddy Impaction Model (EIM). Thus, to circumvent shortcomings of the EIM, the Lagrangian time scale was changed to a wall function and the root-mean-square (RMS) fluctuating velocities were modified to account for the strong anisotropic nature of flow in the immediate vicinity of the wall (boundary layer). Subsequent computed trajectories suggest a precision that ranges from 0.1% to 0.7%, statistical sampling error. The aerodynamic mass median diameter (AMMD) at the inlet (5.5 μm) was consistent with the ARTIST experimental findings. The geometric standard deviation (GSD) varied depending on the scenario evaluated but ranged from 1.61 to 3.2. At the outlet, the computed AMMD (1.9 μm) had GSD between 1.12 and 2.76. Decontamination factors (DF), computed based on deposition from trajectory calculations, were just over 3.5 for the bend and 4.4 at the outlet. Computed DFs were consistent with expert elicitation cited in NUREG-1150 for aerosol retention in steam generators.
575

The Measurement of Size Distribution of Indoor Natural Radioactive Aerosols by Imaging Plate Technique

lida, Takao, Rahman, Naureen Mahbub, Matsui, Akihiro, Yamazawa, Hiromi, Moriizumi, Jun 08 1900 (has links)
No description available.
576

Application and Development of Fused-Droplet Electrospray Mass Spectrometry

Chang, Der-Yeou 29 June 2000 (has links)
none
577

Photochemistry of aromatic hydrocarbons: implications for ozone and secondary organic aerosol formation

Suh, Inseon 16 August 2006 (has links)
Aromatic hydrocarbons constitute an important fraction (~20%) of total volatile organic compounds (VOCs) in the urban atmosphere. A better understanding of the aromatic oxidation and its association in urban and regional ozone and organic aerosol formation is essential to assess the urban air pollution. This dissertation consists of two parts: (1) theoretical investigation of the toluene oxidation initiated by OH radical using quantum chemical and kinetic calculations to understand the mechanism of O3 and SOA precursors and (2) experimental investigation of atmospheric new particle formation from aromatic acids. Density functional theory (DFT) and ab initio multiconfigurational calculations have been performed to investigate the OH-toluene reaction. The branching ratios of OH addition to ortho, para, meta, and ipso positions are predicted to be 0.52, 0.34, 0.11, and 0.03, respectively, significantly different from a recent theoretical study of the same reaction system. Aromatic peroxy radicals arising from initial OH and subsequent O2 additions to the toluene ring are shown to cyclize to form bicyclic radicals rather than undergoing reaction with NO under atmospheric conditions.Isomerization of bicyclic radicals to more stable epoxide radicals possesses significantly higher barriers and hence has slower rates than O2 addition to form bicyclic peroxy radicals. At each OH attachment site, only one isomeric pathway via the bicyclic peroxy radical is accessible to lead to ring cleavage. Decomposition of the bicyclic alkoxy radicals leads primarily to formation of glyoxal and methyl glyoxal along with other dicarbonyl compounds. Atmospheric aerosols often contain a considerable fraction of organic matter, but the role of organic compounds in new nanometer-sized particle formation is highly uncertain. Laboratory experiments show that nucleation of sulfuric acid is considerably enhanced in the presence of aromatic acids. Theoretical calculations identify the formation of an unusually stable aromatic acid-sulfuric acid complex, which likely leads to a reduced nucleation barrier. The results imply that the interaction between organic and sulfuric acids promotes efficient formation of organic and sulfate aerosols in the polluted atmosphere because of emissions from burning of fossil fuels, which strongly impact human health and global climate.
578

Improving aerosol simulations: assessing and improving emissions and secondary organic aerosol formation in air quality modeling

Baek, Jaemeen 21 August 2009 (has links)
Both long-term and short-term exposure to fine particulate matter (PM2.5) has been shown to increase the rate of respiratory and cardiovascular illness, premature death, and hospital admissions from respiratory causes. It is important to understand what contributes to ambient PM2.5 level to establish effective regulation, and air quality model can provide guidance based on the best scientific understanding available. However, PM2.5 simulations in air quality models have often found performance less than desirable, particularly for organic carbon levels. Here, some of major shortcomings of current air quality model will be addressed and improved by using CMAQ, receptor models, and regression analysis. Detailed source apportionment of PM2.5 performed using the CMAQ-tracer method suggests that wood combustion and mobile sources are the largest sources of PM2.5, followed by meat cooking and industrial processes. Biases in emission estimates are investigated using tracer species, such as organic molecular markers and trace metals that are used in receptor models. Comparison of simulated and observed tracer species shows some consistent discrepancies, which enables us to quantify biases in emissions and improve CMAQ simulations. Secondary organic aerosol (SOA) is another topic that is investigated. CMAQ studies on organic aerosol usually underestimate organic carbon with larger than a 50% bias. Formation of aged aerosol from multigenerational semi-volatile organic carbon is added to CMAQ, significantly improving performance of organic aerosol simulations.
579

The sources, formation and properties of soluble organic aerosols: results from ambient measurements in the southeastern united states and the los angeles basin

Zhang, Xiaolu 03 July 2012 (has links)
900 archived FRM filters from 15 sites over the southeast during 2007 were analyzed for PM2.5 chemical composition and physical properties. Secondary components (i.e. sulfate aerosol and SOA) were the major contributors to the PM2.5 mass over the southeast, whereas the contribution from biomass burning varied with season and was negligible (2%) during summer. Excluding biomass burning influence, FRM WSOC was spatially homogeneous throughout the region, similar to sulfate, yet WSOC was moderately enhanced in locations of greater predicted isoprene emissions in summer. On smaller spatial scale, a substantial urban/rural gradient of WSOC was found through comparisons of online WSOC measurements at one urban/rural pair (Atlanta/Yorkville) in August 2008, indicating important contribution from anthropogenic emissions. A comparative study between Atlanta and LA reveals a number of contrasting features between two cities. WSOC gas-particle partitioning, investigated through the fraction of total WSOC in the particle phase, Fp, exhibited differing relationships with ambient RH and organic aerosols. In Atlanta, both particle water and organic aerosol (OA) can serve as an absorbing phase. In contrast, in LA the aerosol water was not an important absorbing phase, instead, Fp was correlated with OA mass. Fresh LA WSOC had a consistent brown color and a bulk absorption per soluble carbon mass at 365 nm that was 4 to 6 times higher than freshly-formed Atlanta soluble organic carbon. Interpreting soluble brown carbon as a property of freshly-formed anthropogenic SOA, the difference in absorption per carbon mass between the two cities suggests most WSOC formed within Atlanta is not from an anthropogenic process similar to LA.
580

Développement d'un modèle de nuage tridimensionnel à microphysique détaillée - Application à la simulation de cas de convection profonde

Leroy, Delphine 27 June 2007 (has links) (PDF)
La représentation des nuages est une source importante d'incertitude dans les modèles à échelle synoptique ou globale. Pour l'améliorer, la solution retenue au Laboratoire de Météorologie Physique consiste à construire un modèle de nuage le plus réaliste possible, pour pouvoir ensuite le comparer avec des représentations plus simplifiées des nuages et détecter leurs éventuelles faiblesses. Dans un premier temps, un modèle de nuage tridimensionnel et à microphysique détaillée pour la phase liquide a été développé par Leporini (2005) à partir du modèle dynamique 3D de Clark et Hall (1991) et du modèle microphysique DESCAM (DEtailed SCAvenging Model) de Flossmann et al. (1985). L'objectif de cette thèse était de compléter ce modèle avec la phase glace. Le modèle final appelé DESCAM-3D utilise au total 195 variables pour décrire les caractéristiques microphysiques des nuages. De plus, 3 distributions (sur 5 au total) servent à représenter les particules d'aérosol résiduelles et interstitielles. Ainsi, le modèle DESCAM-3D est aussi un outil particulièrement adapté pour l'étude des interactions entre aérosol - nuage. <br />Le modèle DESCAM-3D a été validé par comparaison avec des mesures aéroportées dans un nuage convectif de la campagne CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and Cirrus Layers – Florida Area Cirrus Experiment) et avec des observations de la précipitation au sol dans un cas de convection moyenne au dessus des Cévennes (Expérience Alès 2004). Enfin, les premières études des interactions aérosol-nuages avec DESCAM-3D ont déjà montré que le nombre des particules d'aérosol influence la précipitation au sol mais aussi la dynamique du nuage et de ce fait peut avoir des répercussions sur les propriétés de l'enclume des nuages convectifs.

Page generated in 0.0277 seconds