• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 56
  • 22
  • 17
  • 14
  • 8
  • 7
  • 7
  • 7
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 216
  • 23
  • 22
  • 22
  • 21
  • 20
  • 16
  • 16
  • 16
  • 14
  • 14
  • 14
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Fabrication And Characterization Of Aluminum Oxide And Silicon/aluminum Oxide Films With Si Nanocrystals Formed By Magnetron Co-sputtering Technique

Dogan, Ilker 01 July 2008 (has links) (PDF)
DC and RF magnetron co-sputtering techniques are one of the most suitable techniques in fabrication of thin films with different compositions. In this work, Al2O3 and Si/Al2O3 thin films were fabricated by using magnetron co-sputtering technique. For Al2O3 films, the stoichiometric, optical and crystallographic analyses were performed. For Si contained Al2O3 films, the formation conditions of Si nanocrystals were investigated. To do so, these thin films were sputtered on Si (100) substrates. Post annealing was done in order to clarify the evolution of Al2O3 matrix and Si nanocrystals at different temperatures. Crystallographic properties and size of the nanocrystals were investigated by X-ray diffraction (XRD) method. The variation of the atomic concentrations and bond formations were investigated with X-ray photoelectron spectroscopy (XPS). The luminescent behaviors of Si nanocrystals and Al2O3 matrix were investigated with photoluminescence (PL) spectroscopy. Finally, the characteristic emissions from the matrix and the nanocrystals were separately identified.
152

Microwave Sintering And Characterization Of Alumina And Alumina Matrix Ceramic Nanocomposites

Kayiplar, Burcu 01 April 2010 (has links) (PDF)
ABSTRACT MICROWAVE SINTERING AND CHARACTERIZATION OF ALUMINA AND ALUMINA MATRIX CERAMIC NANOCOMPOSITES Kayiplar, Burcu M.S., Department of Metallurgical and Materials Engineering Supervisor: Assist. Prof. Dr. Arcan F. Dericioglu April 2010, 106 pages Efficiency of microwave heating on the sintering of ceramic materials has been investigated in comparison to conventional processing. Monolithic alumina with or without sintering additives such as MgO, CaO, Y2O3 were fabricated by both conventional and microwave sintering at temperatures ranging from 1000&deg / C to 1600&deg / C with a constant soaking time of 1 hour. Based on the densification results on monolithic alumina, nanometer-sized SiC or stabilized ZrO2 particle-dispersed alumina matrix ceramic nanocomposites were sintered by both methods at 1300&deg / C and 1500&deg / C for 1 hour. Sintered ceramic materials were characterized in terms of densification, microstructural evolution, chemical composition and mechanical properties such as hardness and indentation fracture toughness. Microwave sintering was determined to be a remarkably effective method in the production of Al2O3 ceramics at considerably low temperatures (&amp / #8804 / 1400&deg / C) compared to conventional sintering in achieving enhanced relative densities reaching to ~97% with improved microstructural characteristics and mechanical properties. Usage of sintering additives at temperatures higher than 1400&deg / C was determined to be effective in densifiying Al2O3 by both methods. Second phase particle incorporation yielded poor densification resulting in a decrease of hardness of the fabricated ceramic nanocomposites / however, their fracture toughness improved considerably caused by the crack deflection at the dispersed particles and grain boundaries reaching to ~4 MPa&middot / m1/2 in the case of SiC particledispersed nanocomposites. Compared to conventional sintering, microwave sintering is more effective in the processing of alumina and alumina matrix nanocomposites leading to similar densification values along with improved microstructural and mechanical characteristics at lower temperatures in shorter soaking periods.
153

Density Functional Theory Investigation Of Noble Metal Reduction Agents On Gamma-al2o3 In Nox Storage/reduction Catalysis

Artuc, Zuleyha 01 October 2011 (has links) (PDF)
Pollution from automobile exhaust is one of the most major environmental problems because of increasing usage of engine technologies. Diesel and lean burn gasoline engines operate under oxygen rich (lean) conditions and they emit harmfull gases to the atmosphere (CO,CO2, NO, NO2). The control of NOx emission from exhaust has become a challenging issue in engine industry because of the worldwide environmental regulations. Therefore lean-burn NOx emission control technologies have been developed to reduce emission of harmfull gases from exhausts, and the NOx storage/reduction (NSR) catalysts is one of the most promising candidates to reduce the pollution caused by lean-burn engines. In NSR systems, NO from the emission is first oxidized to NO2 over noble metal sites (Pt, Rh, Pd) during lean-burn engine operation. After that NO2 is stored as nitrites and nitrates in alkali earth oxides (BaO,MgO, CaO) particles or monolayer which is well dispersed on a substrate (Gamma-Al2O3, TiO2, SiO2). Finally, stored NOx compound are broken into N2 and O2 on noble metal sites. The Pt/BaO/Gamma-Al2O3 system is one of the most popular subjects in literature both experimentally and theoretically since this system is known to be catalytically more active and ecient in interactions between NOx and Pt-BaO components are still not clearly explained. For this reason, in this thesis, the interaction between catalytic redox components, Pt and Rh, and the support material Gamma-Al2O3 and the eects of Pt and Rh in atomic and diatomic clusters forms on the adsorption of the NO2 molecule on the Gamma-Al2O3(100) surface have been investigated by using density functional theory (DFT).
154

Catalytic Wet Air Oxidation of the High-concentration (COD) Wastewater Generated from the Printed Circuit Board Industry

Lin, Shyh-Liang 21 July 2000 (has links)
In this study, the wastewater generated from etching process of the Printed Circuit Board (PCB) was treated by a process including both acidification and coagulation/sedimentation and then followed by the catalytic wet air oxidation (CWAO) over different catalysts (either Pt/SiO2¡PAl2O3 or Pt¡PX/£^-Al2O3) process in series. Although the initial chemical oxygen demand (COD) concentration of the wastewater is as high as 7740-12700 mg/L, the effluent of the pretreatment process was measured to have COD value in ranges of 3050-4260 mg/L. Several re-action parameters, such as reaction temperatures (200-260¢J), oxygen partial pressures (0-3 MPa), and two kinds of catalysts were performed experimentally to investigate the COD reduction of the wastewater during the CWAO process. Both reaction temperature and variety of catalyst are found most effectively on the COD reduction. However, the effect of oxygen partial pressure on the COD reduction is just in little. Results showed that the COD reduction during the CWAO over the Pt¡PX/£^-Al2O3 catalyst process is the most significant, which with a tow-step re-action and both the two reactions do obey first-order reaction kinetics. A change from a higher reaction activity of the CWAO reaction to a slower one implies a decrease of the reaction rate. On basis of our experiments data, the effective operating conditions of CWAO for the COD reduction was observed to be at temperature of 260¢J under oxygen partial pressure of 2.0 MPa and at a retention time period of 60 min. The COD conversion was calculated as high as 75%; however, it could be enhanced up to 78% and 91%, respectively, when the CWAO was conducted in presence of the Pt/SiO2¡PAl2O3 and Pt¡PX/£^-Al2O3 catalysts, respectively. It can be seen that the organic compound of the wastewater was mineralized most completely (with a COD/TOC ratio of 3.7¡Ó0.2) after the CWAO over the Pt¡PX/£^-Al2O3 catalyst process. Furthermore, a higher COD/TOC ratio of 3.9¡Ó0.3 was achieved when the Pt/SiO2¡PAl2O3 catalyst was in presence of the CWAO process, and the primitive WAO process had the highest COD/TOC ratio of 4.8¡Ó0.4. The experimental data showed that both a higher reaction temperature (¡Ù260¢J) and an application of catalyst are more important factors for the min-eralization of the organic compound of the wastewater during the CWAO process. In our investigation, BOD5/COD ratio has been used to assess if the WAO and/or the CWAO process treatment yield products more amenable to biodegradation. The BOD5/COD ratio was 0.68-0.93 when the reaction temperature was above 220¢J and the retention time was as long as 60 min. Unfortunately, the BOD5/COD ratio of the effluent from the CWAO process came out a lower value (0.45-0.65) though it was under the same reaction conditions. It is probable that the biodegradable portion of the organic compounds of the wastewater were decomposed easier during the CWAO process than during the WAO process. In addition, it was found that the products of the wastewater was decomposed partially into CO2 and into some low molecular weigh acids, such as formic acid, acetic acid, propionic acid, etc. The activation energy with respect to COD was calculated to be 38.42 kJ/mole and 83 kJ/mole, respectively, for the first-step reaction and for the second-step reaction, respectively, of the WAO process. It was al-so calculated that the first-step reaction of the CWAO over the Pt/SiO2¡PAl2O3 catalyst process has activation energy of 18.25 kJ/mole and 25.76 kJ/mole is for the second-step reaction. However, 16.05 kJ/mole and 49.61 kJ/mole are calculated for the first-step and the sec-ond-step reactions, respectively, of the CWAO over the Pt¡PX/£^-Al2O3 catalyst process. It can be seen that the application of both the Pt/SiO2¡PAl2O3 and the Pt¡PX/£^-Al2O3 catalysts has a significant effect on reducing the activation energy of the WAO. It was observed that the total COD conversion of the wastewater is as high as 96% and the BOD5/COD ratio of the effluent has been en-hanced up to more than 0.6. The combination of both the CWAO over the Pt¡PX/£^-Al2O3 catalyst and the biological treatment is a promising tech-nique for the PCB¡¦s wastewater treatment to fit the wastewater control regulation in Taiwan, which requests the COD value of the wastewater discharged should be less than 120 mg/L.
155

Kinetics Of Pressureless Infiltration Of Al-Mg Alloys Into Al2O3 Preforms : A Non-Uniform Capillary Model

Patro, Debdutt 12 1900 (has links)
Al-Mg alloys spontaneously infiltrate into porous ceramic preform in a nitrogenous atmosphere above 750 °C with Mg either pre-alloyed or introduced at the interface to initiate the process. The governing process variables are temperature, alloy composition, atmosphere and particle size of the porous preform. The present study investigates the flow kinetics of Al-Mg melts into porous Al2O3 preforms as a function of particle size of the preform from the standpoint of a physical phenomena fluid flow through a non-uniform capillary. Pressureless infiltration involves two major stages: (a) initiation associated with an incubation period and, (b) continuation where the melt infiltrates the preform. Long (~1 hr) and irreproducible incubation periods are typically observed in the Al- Mg/Al2O3 system when the samples are slowly heated in N2 atmosphere. Such lengthy periods prior to infiltration also lead to excessive Mg loss from the system. In order to accurately measure infiltration rates during the continuation stage, the incubation period was minimized by upquenching samples in air under self-sealing conditions. Interrupted experiments reveal that infiltration occurs within 5 mins. Different phenomena are expected to dictate the capillary rise kinetics through the porous ceramic post-incubation (more specifically, retard the melt movement) (a) triple-point ridging of the melt meniscus on the alumina surface (meniscus pinning) (b) interfacial reaction limited wetting and infiltration (c) pore size and distribution of the porous ceramic (d) melt (Al-Mg) / atmosphere (N2) reaction to form products inside the pore space (decrease in permeability) (e) time-dependent loss of Mg from the system (time-dependent contact angle) Some of the above phenomena viz., fluid flow inside the porous medium and chemical reaction of the melt with the reinforcement are invariably coupled in a complex manner. The contribution of each phenomenon to the kinetics of infiltration (a) and (e) was investigated separately. Triple-line ridging Al sessile drops on alumina substrate spread 4-5 orders of magnitude slower than that predicted by hydrodynamic equilibrium. The melt is pinned by ridges leading to spreading rates of 0.4-4 mm/hr in contrast to viscous drag controlled spreading rates of 1-10 mm/sec. In order to detect ridging in the Al-Mg/Al2O3 reactive couple, uniform Al2O3 capillaries were infiltrated. Experiments were conducted under sealed configuration with metal on both sides of the capillary and Mg turnings at the interface. The uniform capillary itself was placed inside an alumina preform and the assembly upquenched to 800-900 °C to minimize evaporative loss of Mg. Examination of the inner walls of the capillary after leaching away the infiltrated metal shows rough, granular features on the polycrystalline Al2O3 surface. No continuous ridges were seen. EDS of the granular phase suggested stoichiometry of spinel, MgAl2O4, formed as a result of the reaction between the melt and the capillary. From interrupted experiments the average infiltration rate inside the uniform capillary was calculated to be in the ballpark range of 2-6 µm/sec (which is a lower limit to the meniscus velocity), an order of magnitude faster than the spreading rates observed during triple-line ridging (0.1 – 1 µm/sec) indicating that the melt front pinning was not the operative mechanism for influencing infiltration kinetics. Pore size distribution of porous medium Additionally, infiltration was found to be faster in uniform channels (fractures in a preform, annular spaces and aligned pores in freeze-cast preforms) compared to the randomly packed bed itself. The effect of pore size on infiltration kinetics was studied by varying the particle size of the packed bed. Experiments were conducted for two systems (a) non-reactive liquid polyethylene glycol PEG 600 (b) reactive Al-Mg melts into packed alumina beds as a function of particle size and temperature. The PEG 600 / Al2O3 ‘model’ system was used to benchmark the effect of pore size and distribution of the particle bed on flow kinetics from a purely physical standpoint. Typically, a Washburn type of ‘parabolic’ kinetics was observed for the non-reactive couple and the ‘effective’ hydrodynamic radius, reff was extracted. (For a uniform capillary, reff and the physical radius of the capillary are the same). Surprisingly, the ‘Washburn’ radius was found to be 1-2 orders of magnitude smaller than the average pore size and even smaller than the minimum average pore size of the compact. The ‘Washburn’ radii for infiltration of Al-Mg melts was a further order of magnitude smaller than the corresponding values for infiltration of non-reactive PEG 600 through the same packed beds. Non-uniform capillary model To predict the infiltration kinetics through porous media, a sinusoidal capillary model was developed based on the pore size distribution. The input parameters for the model were the average pore neck size and average pore bulge size, which were extracted from the experimentally measured pore size distribution. The flow was assumed to be quasi-steady state and laminar. Hagen-Poiseuille’s equation was employed to calculate the total pressure drop, which was equated with the instantaneous pressure drop across the meniscus. The meniscus velocity within the non-uniform capillary was solved numerically based on the instantaneous pressure drop. The infiltration profile for the sinusoidal capillary displayed jumps associated rise in the narrow segments of the profile while the rise through the broad segment was considerably slow. The overall infiltration profile could be fitted by a parabolic Washburn-type equation. The ‘effective’ hydrodynamic radius of such a sinusoidal capillary was found to be 2-3 orders of magnitude smaller than the average capillary size and even smaller than the narrowest opening of the sinusoidal capillary. The overall kinetics was limited by flow through the broad segment of the profile where the capillary driving force is the lowest coupled with a large viscous retarding force due to the narrow feeding segment thereby leading to extremely slow flow rates. The calculated ‘effective’ radius of the sinusoidal capillary (reff = 0.03 µm) based on the pore size distribution of the 25-37 µm (1.4-10.8 µm) packed bed was similar to the experimentally observed ‘effective’ radius for flow in the non-reactive couple (reff = 0.06 µm) implying good agreement between experiments and modeling. The model was extended for the case of pressure infiltration of Al melts into SiC & TiC compacts reported in the literature, under conditions where chemical reactions are negligible. A good agreement to within a factor of 4 between the observed kinetics and the ones predicted by the current model is observed. In order to understand the origin of this ‘unphysical’ radius dictating capillary rise, the physics of flow through a stepped capillary was analysed. The kinetics of flow through the wide segment could be expressed by an ‘effective’ drodynamic radius r 4min based on geometrical parameters of the stepped capillary as: reff= r3max (Wetting situation) where rminand rmax are the radii of the narrow and broad segments of the capillary. The ‘effective’ radius from the above equation matched well with the numerically derived ‘effective’ radius for flow through the stepped capillary. A r 2 similar expression for flow under applied pressure was derived as: reff= min rmax (non- wetting situation) which is strictly correct for large values of applied pressure. Chemical reactions influencing infiltration kinetics: Upquenched samples (time-dependent contact angle due to Mg loss) The previous investigation of fluid flow in porous media from a purely physical standpoint reveals the dominant role of the pore size and distribution in the porous medium in controlling infiltration kinetics. This however, is accurate only if chemical factors are minimized. In case of the upquenched experiments for the Al-Mg/Al2O3 system, the ‘effective’ radius was determined to be an order of magnitude smaller than that for the PEG 600/Al2O3 couple implying additional chemical factors influencing flow kinetics in this reactive system. Experiments with Mg turnings mixed with the powder bed shows faster infiltration compared to the ones where the entire Mg was placed at the interface showing that local availability of Mg was responsible for slower infiltration kinetics. Diminishing Mg at the melt front, leads to increase of surface tension and increase in contact angle. This was modeled by incorporating a kinetics (time-dependent) contact angle into the sinusoidal capillary model developed for non-reactive infiltration. The infiltration kinetics was found to be retarded in the case of a kinetic contact angle. Thus, both flow retardation through a packed bed and time-dependent variations of contact angle due to Mg loss from the system are responsible for slow pressureless infiltration kinetics of Al-Mg melts inside Al2O3 preforms. The infiltration kinetics predicted by the sinusoidal capillary model thus defines an upper envelope to the rate of infiltration and subsequent composite formation for such a process governed by fluid flow; all other factors if present in effect, retard the kinetics further. Samples processed in N2 atmosphere (reduced permeability due to AlN formation) The more practical case of composite fabrication (PRIMEXTM process) by pressureless infiltration of Al-Mg melts in a flowing N2 containing atmosphere was also examined. The kinetics of infiltration of Al-Mg melts in a flowing N2-H2 atmosphere (pO2 ~ 10-20atm) for different particle sizes of the packed bed was investigated. A large scatter in the infiltrated heights was observed and the absolute infiltration rates could not be established. Moreover, incubation periods were seen to range from 1-2 hours for different particle sizes. Post-incubation, the infiltration kinetics for a wide range of particle sizes was found to be approximately an order of magnitude slower than that for the upquenched samples. Microstructural investigations of the etched samples revealed significant AlN formation at the start of the composite near the preform/billet interface. This reduced the cross-sectional area available for melt flow and possibly led to long incubation periods encountered in the process. AlN formation was also detected in the matrix on the particle surfaces as well as in the interior of the matrix. This reduced the permeability of the compact and increased the hydrodynamic resistance for flow through the porous compact leading to slower infiltration kinetics. Thus both AlN formation in the matrix and Mg loss from the melt retard capillary flow of the melt through the porous ceramic over and above the intrinsic hydrodynamic resistance for flow through the packed bed. Role of atmosphere on the pressureless infiltration process The role of atmosphere in promoting the pressureless infiltration process was examined by using different processing atmospheres such as vacuum, N2-H2 and Ar and combinations thereof. It is known that the pressureless infiltration of Al melts into porous Al2O3 preforms requires both N2 and a critical level of Mg in the system. Samples heated under vacuum and Ar to 900 °C under open conditions did not infiltrate. Rather these showed discoloration related to the formation of MgAl2O4 on the particle surface due to reduction of Al2O3 by Mg vapour. Moreover, samples heated in Ar upto 500 °C followed by heating up in N2-H2 till 900 °C did not infiltrate indicating irreversible changes. Interestingly enough, if the samples were heated in vacuum upto 700 °C followed by N2-H2 at 900 °C, infiltration was observed. Dewetted regions of the compact were seen too adjacent to the preform-billet interface. This indicated a minimum critical partial pressure of N2, which promotes infiltration. From an analysis of the different interfacial energies and their dependence on atmosphere, it was concluded that either an increase in the solid-vapour interfacial energy (~ 10%) or a decrease in the solid-liquid interfacial energy (~ 10%) would lead to a decrease in the contact angle, θ, by 10°, large enough to ensure wettability and infiltration in certain atmospheres. It was also established that Mg infiltrates into porous Al2O3 both in N2-H2 as well as Ar under sealed conditions. So the presence of a minimum partial pressure of N2 favouring wettability was specific to the Al-Mg/Al2O3 system. (pl see the original document for formulas)
156

Fließverhalten und Morphologieeinfluß granulierter spröder Materialien bei hohen Drücken und Belastungsgeschwindigkeiten

Schneider, Ines 29 October 2001 (has links) (PDF)
Die Arbeit beschäftigt sich mit der Weiterentwicklung des verdämmten Druckversuches zur Bestimmung experimenteller Daten an verschiedenen Keramik- und Glassorten. Die untersuchten Materialien (Al2O3, TiB2, B4C, Floatglas, schweres Flintglas) lagen in Form von Fragmenten (Bruchstücken) vor und wurden aus realen Impaktexperimenten wiedergewonnen. Zusätzlich wurden thermisch vorgeschädigte Aluminiumoxidzylinder in die Betrachtungen einbezogen. Daten granulierter bzw. vorgeschädigter spröder Materialien sind von besonderem Interesse für Finite Element Rechnungen, um beispielsweise experimentell sehr aufwendige Beschußversuche rechnerisch zu simulieren.Als Untersuchungsmethode wurde der verdämmte Druckversuch verwendet und sowohl an quasistatische als auch an schlagdynamische Belastungsbedingungen angepaßt. Außerdem wurden die entwickelten Testaufbauten für sehr hohe hydrostatische Drücke optimiert. In den quasistatischen Experimenten konnten damit Drücke von 380 MPa bis 1960 MPa und in den dynamischen Versuchen von 495 MPa bis 2060 MPa erreicht werden. Im Ergebnis wurden mechanische Kennwerte der granulierten bzw. vorgeschädigten Materialien ermittelt (Restfestigkeit, Verdichtungsverhalten) und deren Schädigungsgrad vor und nach den Versuchen bestimmt (Rasterelektronenmikroskopie und Messung der spezifischen Oberfläche). Die vielversprechenden Resultate der verschiedenen Keramiken und Gläser wurden verglichen und die Materialien im Hinblick auf ihr Energieaufnahmevermögen unter schlagartiger Belastung bewertet.
157

Μελέτη της ηλεκτροχημικής ενίσχυσης της αναγωγής του διοξειδίου του άνθρακα σε καταλύτη ρουθηνίου υποστηριζόμενο σε αγωγό ιόντων νατρίου, β-Al2O3

Μακρή, Μαριαλένα 16 May 2014 (has links)
Στην παρούσα εργασία μελετήθηκε η Ηλεκτροχημική Ενίσχυση της αντίδρασης της υδρογόνωσης του CO2. Ο καταλύτης που χρησιμοποιήθηκε ήταν Ru σε β"-Al2O3, ένας αγωγός ιόντων νατρίου. Το θερμοκρασιακό εύρος που εξετάστηκε ήταν από 200-320oC με διάφορες αναλογίες των αερίων τροφοδοσίας (PH2/PCO2 = 14 , 7, 2.3) και σε πιέσεις 1-5 bar. Η μελέτη αφορά τη συμπεριφορά των καταλυτικών ρυθμών σχηματισμού των προϊόντων τόσο σε καθαρή από Na+ επιφάνεια, όσο και κατά την παροχή ιόντων νατρίου σε αυτήν με επιβολή ενός σταθερού αρνητικού ρεύματος ή δυναμικού. Αρχικά στην Εισαγωγή θα αναφερθούμε στο φαινόμενο του θερμοκηπίου και στο πρόβλημα που δημιουργείται από τις εκπομπές του CO2 στην ατμόσφαιρα. Στη συνέχεια, στο Κεφάλαιο 1 θα περιγραφεί το φαινόμενο της Ηλεκτροχημικής Ενίσχυσης της Κατάλυσης (EPOC ή φαινόμενο NEMCA) και στο Κεφάλαιο 2 θα γίνει μια βιβλιογραφική ανασκόπηση της αντίδρασης της υδρογόνωσης του CO2 τόσο καταλυτικά όσο και ηλεκτροκαταλυτικά. Στο Κεφάλαιο 3 θα περιγραφεί ο τρόπος παρασκευής του καταλύτη και ο χαρακτηρισμός του και θα παρουσιαστεί η πειραματική διάταξη και ο αντιδραστήρας που χρησιμοποιήθηκε. Στο Κεφάλαιο 4, θα παρουσιαστούν τα αποτελέσματα όλων των πειραμάτων που έγιναν (θερμοκρασιακά, κινητικά, δυναμικής απόκρισης των ρυθμών σχηματισμού των προϊόντων και επίδρασης του αρνητικού ρεύματος στους ρυθμούς και στην κάλυψη των Na+) και τέλος, θα παρουσιαστούν τα συμπεράσματα της έρευνας αυτής. / In this study, we examine the phenomenon of Electrochemical Promotion of the catalytic hydrogenation of CO2. The catalyst used was ruthenium on β-Al2O3, a sodium conductor. The temperature range examined was 200-320oC, in different gas compositions (PH2/PCO2=14,7,2.3) and pressures up to 5 bar. This study concerns the behaviour of the production rates of the products in a clean surface and under sodium pumping by applying a negative potential or current. In the introduction there is a description of the greenhouse effect and the disaster caused by the emissions of the CO2 and in CHAPTER 1 the Phenomenon of Electrochemical Promotion (EPOC, NEMCA) is being described. In Chapter 2 there is an overview of the hydrogenation of CO2, whereas in Chapter 3, we describe the preparation and characterization of the catalyst along with the experimental set up. In Chapter 4 the results of all the experiments are presented (light off, kinetics, transients) and finally, we present the conclusions of this study.
158

Μελέτη του φαινομένου της ηλεκτροχημικής ενίσχυσης σε αντιδράσεις βιομηχανικού ενδιαφέροντος / Electrochemical Promotion of industrial catalytic reactions

Γιαννίκος, Αλέξανδρος 25 June 2007 (has links)
Μελετήθηκε το φαινόμενο της ηλεκτροχημικής ενίσχυσης για τις αντιδράσεις της εκλεκτικής υδρογόνωσης του ακετυλενίου προς αιθυλένιο σε καταλύτη Pd εναποτεθειμένο σε β\"-Al2O3 και της οξείδωσης του βουταδιενίου προς προϊόντα εκλεκτικής οξείδωσης σε καταλύτη Ag0.73V2O5.365 εναποτεθειμένο σε YSZ. Το φαινόμενο της ηλεκτροχημικής ενίσχυσης (Electrochemical Promotion) αφορά την τροποποίηση της ενεργότητας καταλυτών που είναι εναποτεθειμένοι πάνω σε στερεούς ηλεκτρολύτες κατά την επιβολή δυναμικού στη διεπιφάνεια καταλύτη | στερεού ηλεκτρολύτη. Στην παρούσα διατριβή μελετήθηκαν αντιδράσεις βιομηχανικού ενδιαφέροντος σε συνθήκες παρόμοιες με αυτές της βιομηχανικής πρακτικής. Υδρογόνωση Ακετυλενίου: Βρέθηκε ότι η αύξηση της κάλυψης της καταλυτικής επιφάνειας με ιόντα Na+ έχει σαν αποτέλεσμα την σημαντική αύξηση της εκλεκτικότητας προς αιθυλένιο. Το φαινόμενο είναι πλήρως αντιστρεπτό δηλαδή η απομάκρυνση των ιόντων Na+ από την καταλυτική επιφάνειας έχει σαν συνέπεια την επιστροφή των καταλυτικών ρυθμών στους αρχικούς που αντιστοιχούν σε επιφάνεια καθαρή από ιόντα Na+. Ο ηλεκτροχημικά ενισχυμένος καταλύτης της παρούσας βρέθηκε ότι είναι πιο εκλεκτικός (κατά 1.5%) σε σχέση με τον βιομηχανικό καταλύτη για υψηλή μετατροπή ακετυλενίου Εκλεκτική οξείδωση βουταδιενίου: Βρέθηκε ότι είναι δυνατή η ηλεκτροχημική ενίσχυση της οξείδωσης τόσο του αιθυλενίου, η οποία εξετάστηκε ως αντίδραση “μοντέλο”, όσο και του βουταδιενίου με χρήση ενός μη αγώγιμου οξειδοαναγωγικού καταλύτη όπως αυτού της παρούσας μελέτης. Η επιβολή θετικών δυναμικών δηλαδή η μεταφορά ιόντων οξυγόνου στην καταλυτική επιφάνεια έχει σαν αποτέλεσμα της αύξηση των καταλυτικών ρυθμών για τα περισσότερα προϊόντα εκλεκτικής οξείδωσης ενώ μικρότερες αυξήσεις παρατηρούνται κατά την επιβολή αρνητικών δυναμικών. Βρέθηκε επίσης ότι η οξειδωτική κατάσταση του καταλύτη επηρεάζει σημαντικά τόσο την κατανομή των προϊόντων όσο και το μέγεθος της ηλεκτροχημικής ενίσχυσης. / The phenomenon of Electrochemical Promotion was studied for two catalytic reactions of industrial importance: for the hydrogenation of acetylene on Pd catalytic films deposited on β\"-Al2O3 solid electrolyte and for the selective oxidation of butadiene on Ag0.73V2O5.365, industrial catalyst, deposited on YSZ solid electrolyte. The Electrochemical Promotion concerns the modification of catalytic activity and selectivity of conductive catalysts deposited on solid electrolytes by applying electrical currents or potential between the catalyst and the counter electrode also deposited on the solid electrolyte. Acetylene Hydrogenation: It was found that the selectivity to C2H4 is significantly enhanced upon increasing the coverage of catalytic surface with electrochemically supplied sodium ions. The phenomenon is reversible that is the electrochemical removing of sodium ions from the catalytic surface results to the return of catalytic activity and selectivity at the initial values corresponding to the unpromoted catalyst. The electrochemical promoted catalyst appears to be more selective (by 1.5%) than the industrial catalyst in the high acetylene conversion region Selective Oxidation of Butadiene: It was found that both ethylene oxidation, which is studied as “model” reaction and selective oxidation of butadiene can be enhanced electrochemically on a non conductive redox catalyst. It was found that the oxygen species, which are carried electrochemically from YSZ solid electrolyte to the catalytic surface, by applying positive potential or current, enhance the catalytic rates for all partial oxidation products. Minor increases to the catalytic rates observed by applying negative potential or current. It was also found that the oxidation state of catalyst affects significantly both the reaction rates and the magnitude of electrochemical promotion.
159

Surface Coatings as Xenon Diffusion Barriers for Improved Detection of Clandestine Nuclear Explosions

Bläckberg, Lisa January 2014 (has links)
This thesis investigates surface coatings as xenon diffusion barriers on plastic scintillators. The motivation for the work is improved radioxenon detection systems, used within the verification regime of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). One type of radioxenon detection systems used in this context is the Swedish SAUNA system. This system uses a cylindrical plastic scintillator cell to measure the beta decay from radioxenon isotopes. The detector cell also acts as a container for the xenon sample during the measurement. One problem with this setup is that part of the xenon sample diffuses into the plastic scintillator material during the measurement, resulting in residual activity left in the detector during subsequent measurements. This residual activity is here referred to as the memory effect. It is here proposed, and demonstrated, that it is possible to coat the plastic scintillator material with a transparent oxide coating, working as a xenon diffusion barrier. It is found that a 425 nm Al2O3 coating, deposited with Atomic Layer Deposition, reduces the memory effect by a factor of 1000, compared an uncoated detector. Furthermore, simulations show that the coating might also improve the light collection in the detector. Finally, the energy resolution of a coated detector is studied, and no degradation is observed. The focus of the thesis is measurements of the diffusion barrier properties of Al2O3 films of different thicknesses deposited on plastic scintillators, as well as an evaluation of the expected effect of a coating on the energy resolution of the detector. The latter is studied through light transport simulations. As a final step, a complete coated plastic scintillator cell is evaluated in terms of memory effect, efficiency and energy resolution. In addition, the xenon diffusion process in the plastic material is studied, and molecular dynamics simulations of the Xe-Al2O3 system are performed in order to investigate the reason for the need for a rather thick coating to significantly reduce the memory effect.
160

Residual stress in CVD coatings : Evaluation of XRD and TEM methods for micro and macrostress determination

Karlsson, Dennis January 2015 (has links)
Cutting tools are subject to extreme environment during processing, with hightemperatures and pressures. CVD coatings are used to increase lifetime andperformance of the WC/Co composite. Residual stresses in the coatings areinteresting as they may be destructive or constructive for the material duringoperation. Blasting is used to change the as-deposited tensile stress to compressive.The usefulness of X-ray diffraction (XRD) and nanobeam diffraction (NBD) forcharacterization of strains in the different coating layers has been investigated. XRDwith different anode materials has been used to determine the macrostress in thelayers and an attempt was done to calculate the average microstrain and crystallitesize. NBD was used to study the microstrain within single grains of the differentmaterials. A specimen preparation method has been developed for the studiedsamples using the FIB.The XRD analysis shows that the measurement condition is of great importanceduring stress measurements. The macrostress of the different samples show that theZrCN type coating is less stressed than the TiCN type coating after deposition. It isalso shown that the ZrCN type coating is less affected by the blasting. Determinationof microstrain and crystallite size from XRD needs further development.The NBD is a good method to evaluate microstrain within single grains, or betweengrains oriented in the same zone axis. The analyses show more strain within thegrains after blasting. The measurements indicate more strain variation in the Al2O3layer in the TiCN system compared to the ZrCN system.

Page generated in 0.4337 seconds