Spelling suggestions: "subject:"[een] ARITHMETIC PROGRESSIONS"" "subject:"[enn] ARITHMETIC PROGRESSIONS""
1 |
Topics in the distribution of primesColeman, Mark David January 1988 (has links)
No description available.
|
2 |
Applications of sieve methods in number theoryDyer, A. K. January 1987 (has links)
No description available.
|
3 |
Variations on a theorem by van der WaerdenJohannson, Karen R 10 April 2007 (has links)
The central result presented in this thesis is van der Waerden's theorem on arithmetic progressions. Van der Waerden's theorem guarantees that for any integers k
and r, there is an n so that however the set {1, 2, ... , n} is split into r disjoint partition classes, at least one partition class will contain a k-term arithmetic progression. Presented here are a number of variations and generalizations of van der Waerden's theorem that utilize a wide range of techniques from areas of mathematics including combinatorics, number theory, algebra, and topology. / May 2007
|
4 |
Variations on a theorem by van der WaerdenJohannson, Karen R 10 April 2007 (has links)
The central result presented in this thesis is van der Waerden's theorem on arithmetic progressions. Van der Waerden's theorem guarantees that for any integers k
and r, there is an n so that however the set {1, 2, ... , n} is split into r disjoint partition classes, at least one partition class will contain a k-term arithmetic progression. Presented here are a number of variations and generalizations of van der Waerden's theorem that utilize a wide range of techniques from areas of mathematics including combinatorics, number theory, algebra, and topology.
|
5 |
Variations on a theorem by van der WaerdenJohannson, Karen R 10 April 2007 (has links)
The central result presented in this thesis is van der Waerden's theorem on arithmetic progressions. Van der Waerden's theorem guarantees that for any integers k
and r, there is an n so that however the set {1, 2, ... , n} is split into r disjoint partition classes, at least one partition class will contain a k-term arithmetic progression. Presented here are a number of variations and generalizations of van der Waerden's theorem that utilize a wide range of techniques from areas of mathematics including combinatorics, number theory, algebra, and topology.
|
6 |
Progressões aritméticas na linha construtivista / Arithmetic progressions in the constructivist lineMelo, Marcelo de Souza 10 October 2018 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2018-11-12T10:22:38Z
No. of bitstreams: 2
Dissertação - Marcelo de Souza Melo - 2018.pdf: 4311410 bytes, checksum: b1e7a39d72be1f9d1a6d57405fb46c93 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-11-13T09:12:22Z (GMT) No. of bitstreams: 2
Dissertação - Marcelo de Souza Melo - 2018.pdf: 4311410 bytes, checksum: b1e7a39d72be1f9d1a6d57405fb46c93 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-11-13T09:12:22Z (GMT). No. of bitstreams: 2
Dissertação - Marcelo de Souza Melo - 2018.pdf: 4311410 bytes, checksum: b1e7a39d72be1f9d1a6d57405fb46c93 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2018-10-10 / This work shows how the content Arithmetic Progressions can be approached following
the constructivist line of teaching, making the students have more active participation
in the construction of their knowledge. It is veri_ed that using this model, one
can improve students' understanding by introducing in the initial classes one or more
problem situations in order to raise previous knowledge for the later acquisition of new
knowledge. There are some arguments of professors / educators on this subject and
also the practical application of classes structured in the constructivist line on arithmetic
progressions, for students of the second year of high school in a public school in
the Federal District. The observations about this style of class were made not only by
the teacher who applied the activity proposed in class, but also by the students who
answered questions that allowed to express the impressions about the activity. / Este trabalho mostra como o conteúdo Progressões Aritméticas pode ser abordado
seguindo a linha construtivista de ensino, fazendo com que os alunos tenham participa
ção mais ativa na construção do seu conhecimento. É veri_cado que utilizando esse
modelo, pode-se melhorar a compreensão dos discentes, introduzindo nas aulas iniciais,
uma ou mais situações-problema, com o intuito de levantar conhecimentos prévios
para a aquisição posterior do novo saber. Existem algumas argumentações de professores/
educadores consagrados sobre esse tema e também a aplicação prática de aulas
estruturadas na linha construtivista sobre progressões aritméticas, para alunos do segundo
ano do ensino médio de uma escola pública do Distrito Federal. As observações
sobre este estilo de aula foram feitas não somente pelo professor que aplicou a atividade
proposta em sala aula, mas também pelos discentes que responderam questões
que permitiam expressar as impressões sobre a atividade.
|
7 |
Arithmetic Structures in Small Subsets of Euclidean SpaceCarnovale, Marc 30 August 2019 (has links)
No description available.
|
8 |
Funções aritméticas / Arithmetic FunctionsMontrezor, Camila Lopes 28 April 2017 (has links)
Neste estudo, apresentamos conteúdos matemáticos adaptáveis tanto para os anos finais do ensino fundamental quanto para o ensino médio. Iniciamos com um conjunto de ideias preliminares: indução matemática, triângulo de Pascal, Binômio de Newton e relações trigonométricas, para a obtenção de fórmulas de somas finitas, em que os valores das parcelas são computados sobre números inteiros consecutivos, e da técnica de transformação de soma finita em telescópica. Enunciamos Progressões Aritméticas e Geométricas como sequências numéricas e suas propriedades, obtendo a soma de seus n primeiros termos, associando com propriedades do triângulo de Pascal. Por fim, descrevemos Funções Aritméticas, Funções Aritméticas Totalmente Multiplicativas e Fortemente Multiplicativas, como sequências de números naturais, com suas operações e propriedades, direcionando ao objetivo de calcular o número de divisores naturais de n, a soma de todos os divisores naturais de n, e assim por diante. Como consequência, exibimos a fórmula de contagem do número de polinômios mônicos irredutíveis. / In this study, we present mathematical content that is adaptable to both of the final years of elementary school and to high school. We start with a set of preliminary ideas: mathematical induction, Pascal\'s triangle, Newton\'s binomial and trigonometric relations, to obtain finite sum formulas, where the parts are computed on consecutive integers, and the technique for transforming a finite sum in telescopic one. We state the Arithmetic and Geometric Progressions as numerical sequences and study their properties, obtaining the sum of their n first terms, associating with properties of the Pascal\'s triangle. Finally, we describe the Arithmetic, Totally Multiplicative and Strongly Multiplicative Arithmetic Functions, as sequences of natural numbers, with their operations and properties, as a way to calculating the number of natural divisors of n, the sum of all natural divisors of n, and so on. As a consequence, we obtain the counting formula of the number of irreducible mononical polynomials.
|
9 |
Funções aritméticas / Arithmetic FunctionsCamila Lopes Montrezor 28 April 2017 (has links)
Neste estudo, apresentamos conteúdos matemáticos adaptáveis tanto para os anos finais do ensino fundamental quanto para o ensino médio. Iniciamos com um conjunto de ideias preliminares: indução matemática, triângulo de Pascal, Binômio de Newton e relações trigonométricas, para a obtenção de fórmulas de somas finitas, em que os valores das parcelas são computados sobre números inteiros consecutivos, e da técnica de transformação de soma finita em telescópica. Enunciamos Progressões Aritméticas e Geométricas como sequências numéricas e suas propriedades, obtendo a soma de seus n primeiros termos, associando com propriedades do triângulo de Pascal. Por fim, descrevemos Funções Aritméticas, Funções Aritméticas Totalmente Multiplicativas e Fortemente Multiplicativas, como sequências de números naturais, com suas operações e propriedades, direcionando ao objetivo de calcular o número de divisores naturais de n, a soma de todos os divisores naturais de n, e assim por diante. Como consequência, exibimos a fórmula de contagem do número de polinômios mônicos irredutíveis. / In this study, we present mathematical content that is adaptable to both of the final years of elementary school and to high school. We start with a set of preliminary ideas: mathematical induction, Pascal\'s triangle, Newton\'s binomial and trigonometric relations, to obtain finite sum formulas, where the parts are computed on consecutive integers, and the technique for transforming a finite sum in telescopic one. We state the Arithmetic and Geometric Progressions as numerical sequences and study their properties, obtaining the sum of their n first terms, associating with properties of the Pascal\'s triangle. Finally, we describe the Arithmetic, Totally Multiplicative and Strongly Multiplicative Arithmetic Functions, as sequences of natural numbers, with their operations and properties, as a way to calculating the number of natural divisors of n, the sum of all natural divisors of n, and so on. As a consequence, we obtain the counting formula of the number of irreducible mononical polynomials.
|
10 |
A Detailed Proof of the Prime Number Theorem for Arithmetic ProgressionsVlasic, Andrew 05 1900 (has links)
We follow a research paper that J. Elstrodt published in 1998 to prove the Prime Number Theorem for arithmetic progressions. We will review basic results from Dirichlet characters and L-functions. Furthermore, we establish a weak version of the Wiener-Ikehara Tauberian Theorem, which is an essential tool for the proof of our main result.
|
Page generated in 0.0408 seconds