Spelling suggestions: "subject:"[een] ATOMIC FORCE MICROSCOPY"" "subject:"[enn] ATOMIC FORCE MICROSCOPY""
111 |
Probing Surface Charge Densities of Common DielectricsAlghonaim, Abdulmalik 07 1900 (has links)
The value of the surface charge density of polypropylene reported in literature has
a three order of magnitude discrepancy. Nauruzbayeva et al report a 0.7nCcm−2
as the surface charge density of polypropylene as measured using the charge
of electrified droplets[1]. Meagher and Craig reported result 111nCcm−2 as estimated
by electric double layer theory from colloidal probe Atomic force microscopy
(AFM) force spectroscopy [2]. We show that oxidation of hydrophobic
surfaces as a potential mechanism in origin of these surface charges. Using
colloidal probe AFM We measured the surface charge densities of Teflon AF,
perfluorodecanethiol, Perfluorodecyltrichlorosilane(FDTS), Octadecyltrichlorosilane,
polystyrene, and polypropylene. Also, The pH dependence of the surface
charge density for FDTS was studied and it shows the behavior expected of a
weak acid in response to pH. We suspect that the origin of the surface charges
is mostly likely impurities or surface oxidation. We conclude that the electrometer
and dispensed droplets approach cannot detect these charges because of the
process of de-wetting all the surface be neutralized to maintain charge neutrality.
This explanation supports Nauruzbayeva et al claims about surface bound
charges[1].
|
112 |
Micromoulding: process measurements, product morphology and properties.Whiteside, Benjamin R., Martyn, Michael T., Coates, Philip D., Greenway, G., Allen, P., Hornsby, P. January 2004 (has links)
No / The growth in Micro Electro-Mechanical Systems (MEMS) and demand for functional devices at smaller and smaller length scales has placed increasing demands on industry for product miniaturisation. Consequently, the micro-injection moulding (micromoulding) technology has evolved for the mass production of minute, intricate, polymer and composite components. Although there has been significant growth in the technology, there is little understanding of the effects of the process dynamics on product properties. This paper presents details of a programme of work conducted within these laboratories with the objectives of enhancing the understanding of polymer processing-property interaction. More particularly, the effects of microscale processing on the rheological, mechanical and tribological properties of engineering and commodity polymers, nanocomposites, metal and ceramic injection moulded feedstock and biomaterials are being explored. Simple analysis reveals that process conditions are potentially more severe on melts than those encountered during conventional moulding. High shear and rapid cooling rates combined with a large surface area to volume ratio may have a much greater influence over the resultant properties of a micromoulded product. A Battenfeld Microsystem50 micromoulding machine has been instrumented with a variety of sensors and data acquisition equipment, producing process data for a number of different cavity geometries. A novel microinjection compounding (MIC) machine has also been developed minimising the process stages and reducing material exposure to excessive residence times. This paper gives details of the effects of micromoulding process conditions on component surface morphology and mechanical properties measured using SEM, atomic force microscopy and nano-indentation techniques.
|
113 |
EXTRACTION OF NON-LINEAR MATERIAL PROPERTIES OF BIO-GELS USING ATOMIC FORCE MICROSCOPYTRIPATHY, SAKYASINGH 27 September 2005 (has links)
No description available.
|
114 |
Dielectric Constant Measurements Using Atomic Force Microscopy SystemDhanapala, Hembathanthirige Yasas 18 September 2012 (has links)
No description available.
|
115 |
Nanostructural Studies of Protein Mms6 Using Atomic Force MicroscopyPerez-Guzman, Lumarie 30 August 2012 (has links)
No description available.
|
116 |
Investigation of Hydrodynamic and Depletion Interactions in Binary Colloidal DispersionsJames, Gregory Keith 19 December 2013 (has links)
Within a colloidal dispersion, the presence of negatively adsorbing material can produce a variety of effects on the dispersion properties and interactions. With increasing concentration, the negatively adsorbing material induces both depletion and structural forces on the dispersion, which can dramatically affect both colloidal stability and near-contact hydrodynamics. This project focused on expanding our understanding of the effects of such negatively adsorbing materials on both equilibrium and dynamic interactions between particles.
The effects of charged, hard spheres (silica nanoparticle) on the hydrodynamic drag force a particle experiences as it approaches a flat plate were measured experimentally using colloid probe atomic force microscopy (CP-AFM). Deviation was found between the measured drag force and predictions for the drag force in a simple, Newtonian fluid. The measured drag force was always smaller than the predicted drag force as the particle approached contact with the plate. An effective viscosity, that approached the dispersing fluid viscosity at contact and the bulk viscosity at large separations, was determined for the system. This effective viscosity displayed similar characteristics to those predicted theoretically by Bhattacharya and Blawzdziewicz (J. Chem. Phys. 2008, 128, 214704.).
The effects of both anionic and cationic micelles on the depletion and structural forces in a colloidal dispersion were studied both experimentally (with CP-AFM) and theoretically. The depletion and structural forces between a microparticle and a flat plate were measured and compared with the depletion force predicted by the force-balance model of Walz and Sharma (J. Colloid Interface Sci. 1994, 168, 485-496.). Consistent with previous work, the measured depletion force for both micelles was smaller in magnitude than that predicted by the Walz and Sharma model for hard, charged spheres. It is theorized that rearrangement of the micelle surfaces charges or physical deformation of the micelles may be responsible for the observed result. An effective surface potential for the micelles is proposed as a correction to the Walz and Sharma model.
Finally, the stability of colloidal dispersions was studied macroscopically in solutions of ionic micelles. The colloidal dispersions displayed clear flocculation behavior in both cationic and anionic micelles. This flocculation behavior was compared with energy profiles determined from CP-AFM experiments between a single particle and a flat plate. A simple phase diagram was proposed for predicting the stability of colloidal dispersions based solely on the depth of the depletion energy well and the height of the repulsive energy barrier. / Ph. D.
|
117 |
Correlation Force Spectroscopy for Single Molecule MeasurementsRadiom, Milad 24 July 2014 (has links)
This thesis addresses development of a new force spectroscopy tool, correlation force spectroscopy (CFS), for the measurement of the mechanical properties of very small volumes of material (molecular to µm³) at kHz-MHz time-scales. CFS is based on atomic force microscopy (AFM) and the principles of CFS resemble those of dual-trap optical tweezers. CFS consists of two closely-spaced micro-cantilevers that undergo thermal fluctuations. Measurement of the correlation in thermal fluctuations of the two cantilevers can be used to determine the mechanical properties of the soft matter, e.g. a polymeric molecule, that connects the gap between the two cantilevers. Modeling of the correlations yields the effective stiffness and damping of the molecule. The resolution in stiffness is limited by the stiffness of the cantilever and the frequency by the natural frequency of the cantilevers, but, importantly, the damping resolution is not limited by the damping of the cantilever, which has enabled high-resolution measurements of the internal friction of a polymer. The concept of CFS was originally presented by Roukes' group in Caltech [Arlett et al., Lecture Notes in Physics, 2007]; I developed the first practical versions of CFS for experimentation, and have used it in two applications (1) microrheology of Newtonian fluids and (2) single molecule force spectroscopy. To understand the correlation in thermal fluctuations of two cantilevers I initially validated the theoretical approach for analyzing correlation in terms of deterministic model using the fluctuation-dissipation theorem [Paul and Cross, PRL, 2004]. I have shown that the main advantages of such correlation measurements are a large improvement in the ability to resolve stiffness and damping. Use of CFS as a rheometer was validated by comparison between experimental data and finite element modeling of the deterministic vibrations of the cantilevers using the known viscosity and density of fluids. Work in this thesis shows that the data can also be accurately fitted using a simple harmonic oscillator model, which can be used for rapid rheometric measurements, after calibration. The mechanical properties of biomolecules such as dextran and single stranded DNA (ssDNA) are also described. CFS measurements of single molecule properties of ssDNA reveal the internal friction of the molecule in solution. / Ph. D.
|
118 |
Nanoscale Investigation of Adhesion, Friction, and Wear in Chemically Heterogeneous Responsive Polymer BrushesVyas, Mukesh Kumar 07 November 2008 (has links)
Polymer brushes provide the responsive smart surfaces which can be used for fabrication of various devices. In this thesis work, adhesion, friction, and wear of polystyrene (PS) - poly(2-vinyl pyridine) (P2VP) and polystyrene - poly(acrylic acid) (PAA) binary brushes and corresponding monobrushes were investigated in dried state under controlled environment. Spin-coated films were also investigated for comparison. The aim was to explore possibilities to control/tune adhesion, friction, and wear between inorganic or polymeric surfaces by use of polymer brushes. Atomic force microscopy (AFM) with sharp silicon nitride tip and colloidal probes was employed to investigate the nanoscale adhesion and friction forces between different inorganic and polymeric surfaces. Adhesion and friction on the polymer brushes were comparable to that on the spin-coated films. Adhesion and friction force values were correlated, and were in accordance with the wettability of the brush surfaces for most of the samples. Switching in the adhesion and friction forces was observed for the PS+P2VP and PS+PAA binary brushes on treatment with selective solvents. Maximum switching in adhesion force and friction coefficient was by a factor of 2.7 and 5.4, respectively. Furthermore, switching of friction for mixed brush surface was observed during macroscale friction measurements using nanoindenter. Friction coefficients at macroscale were higher than those at the nanoscale. Moreover, adhesion and friction forces between the surfaces were significantly influenced by the humidity, grafting density of polymer brushes, chemical composition of top of the binary brush surface, and tip scan velocity. Nanowear studies were carried out with AFM using sharp silicon nitride tip while macrowear studies were carried out using nanoindenter. Nanowear on the surfaces was affected by molecular entanglements, adhesion and friction forces as well as shape and status of the tip. It was observed that the typical wear mode for PS brushes (treated with toluene) was ripple formation. In case of P2VP brushes (treated with ethanol) and PAA brushes (treated with pH 10 water), wear occurred via removal of the polymeric material. Wear mechanism observed for the monobrushes was similar to that observed for the spin-coated thick films of the same polymeric material. However, extent of the wear on the brush surfaces significantly differed from that on the spin-coated films. In case of PS+P2VP and PS+PAA binary brush samples, change in the wear mode was observed on treatment with the different selective solvents. On treatment with toluene (PS on the top), both of these binary brushes showed the wear by formation of the ripples. On the other hand, when these binary brushes were treated with selective solvent for P2VP or PAA, wear occurred mainly via removal of the polymeric material. The amount of wear increased with the number of scans for all the polymer brush samples. Moreover, wear on the polymer brush surfaces was also increased on increase in the applied load and decrease in the scan speed. Wear behavior on macroscale was averaged due to contact between surfaces at large number of asperities. Our results show that adhesion, friction, and wear of polymer surfaces can be controlled/tuned by the use of binary polymer brushes.
|
119 |
The fabrication and study of stimuli-responsive microgel-based modular assembliesClarke, Kimberly C. 21 September 2015 (has links)
This dissertation describes the development of temperature and pH-responsive interfaces, where the emphasis is placed on tuning the responsivities within a physiological temperature range. This tuning is achieved through the utilization of polymeric building blocks, where each component is specifically synthesized to have a unique responsivity. The assembly of these components onto surfaces permits the fabrication of stimuli-responsive interfaces. In addition, this dissertation explores the use of a self-assembling peptide as a modular building block to modify the interface of hydrogel microparticles, resulting in the formation of a new biosynthetic construct.
Hydrogels are three-dimensional, crosslinked polymer networks that swell in water. Over the years, hydrogels have been extensively explored as biomaterials due to their high water content, tunable mechanics, and chemical versatility. Two areas where hydrogels have received considerable interest are drug delivery and extracellular matrices. Unfortunately, developing structurally and functionally complex hydrogels from the top down is challenging because many parameters cannot be independently tuned in a bulk material. An alternative route would be to develop a library of building blocks, where each is tailored for a given function, and assemble these components into composite structures. The building block synthesized and utilized in this dissertation is a microgel. Microgels are a colloidal dispersion of hydrogel microparticles, ranging in size from 100 to 1000 nm in diameter. The microgels were prepared from environmentally responsive polymers, sensitive to both temperature and pH.
Microgels have been used in the fabrication of polyelectrolyte layer-by-layer films, where the microgel serves as the polyanion and a linear polycation is used to “stitch” the particles together. In Chapters 3 and 4, stimuli-responsive interfaces are prepared from environmentally responsive microgel building blocks. In particular, Chapter 3 demonstrates tuning of the film response temperature by preparing several different microgels with differing ratios of two thermoresponsive polymers. Chapter 4 evaluates the influence of the pH environment on the thermoresponsivity of microgel films. While the pH environment was found to substantially affect some films, it is possible to prepare microgel films that behave independently of pH. The swelling/de-swelling of the films was also investigated by atomic force microscopy (AFM) as a function of both pH and temperature. It was determined that the AFM imaging parameters can drastically affect the measured film thicknesses (Appendix A) due to the soft, deformable nature of microgel films. The studies in these chapters illustrate the advantages of preparing composite structures from discrete components, where the functionality of the composite is dictated by the constituent particles.
In Chapter 5, attention is placed on modifying the surface of microgel particles. Many of the traditional routes used to modify microgels involve the incorporation of co-monomers into the network or the addition of polymer shells. However, a new core/shell construct is presented, where a microgel core is coated with a self-assembling peptide shell. In this scenario, the peptide shell serves as a modular scaffold, where surface-localized functional groups can participate in reactions. Although there are still a number of questions remaining in regard to the assembly process and stability of the construct, initial experiments suggests that this is an interesting and promising structure to study.
Finally, a discussion of future directions and possible experiments is provided in Chapter 6. Hopefully, this will serve as a guide for further exploration of the research presented herein. Microgels remain a rich class of materials to study and employ. While their synthesis is rather straightforward, their use often results in complex behavior and interesting phenomena. Understanding their behavior is a crucial step in realizing their full potential.
|
120 |
Investigations into Multivalent Ligand Binding ThermodynamicsWatts, Brian Edward January 2015 (has links)
<p>Virtually all biologically relevant functions and processes are mediated by non-covalent, molecular recognition events, demonstrating astonishingly diverse affinities and specificities. Despite extensive research, the origin of affinity and specificity in aqueous solution - specifically the relationship between ligand binding thermodynamics and structure - remains remarkably obscure and is further complicated in the context of multivalent interactions. Multivalency describes the combinatorial interaction of multiple discrete epitopes across multiple binding surfaces where the association is considered as the sum of contributions from each epitope and the consequences of multivalent ligand assembly. Gaining the insight necessary to predictably influence biological processes with novel therapeutics begins with an understanding of the molecular basis of solution-phase interactions, and the thermodynamic parameters that follow from those interactions. Here we continue our efforts to understand the basis of aqueous affinity and the nature of multivalent additivity.</p><p>Multivalent additivity is the foundation of fragment-based drug discovery, where small, low affinity ligands are covalently assembled into a single high affinity inhibitor. Such systems are ideally suited for investigating the thermodynamic consequences of multivalent ligand assembly. In the first part of this work, we report the design and synthesis of a fragment-based ligand series for the Grb2-SH2 protein and thermodynamic evaluation of the low affinity ligand fragments compared to the intact, high affinity inhibitor by single and double displacement isothermal titration calorimetry (ITC). Interestingly, our investigations reveal positively cooperative multivalent additivity - a binding free energy of the full ligand greater than the sum of its constituent fragments - that is largely enthalpic in origin. These results contradict the most common theory of multivalent affinity enhancement arising from a "savings" in translational and rotational entropy. The Grb2-SH2 system reported here is the third distinct molecular system in which we have observed enthalpically driven multivalent enhancement of affinity.</p><p>Previous research by our group into similar multivalent affinity enhancements in protein-carbohydrate systems - the so-called "cluster glycoside effect" - revealed that evaluation of multivalent interactions in the solution-phase is not straightforward due to the accessibility of two disparate binding motifs: intramolecular, chelate-type binding and intermolecular, aggregative binding. Although a number of powerful techniques for evaluation of solution-phase multivalent interactions have been reported, these bulk techniques are often unable to differentiate between binding modes, obscuring thermodynamic interpretation. In the second part of this work, we report a competitive equilibrium approach to Molecular Recognition Force Microscopy (MRFM) for evaluation of ligand binding at the single-molecule level with potential to preclude aggregative associations. We have optimized surface functionalization strategies and MRFM experimental protocols to evaluate the binding constant of surface- and tip-immobilized single stranded DNA epitopes. Surprisingly, the monovalent affinity of an immobilized species is in remarkable agreement with the solution-phase affinity, suggesting the competitive equilibrium MRFM approach presents a unique opportunity to investigate the nature of multivalent additivity at the single molecule level.</p> / Dissertation
|
Page generated in 0.0336 seconds