Spelling suggestions: "subject:"[een] ATTRACTOR"" "subject:"[enn] ATTRACTOR""
131 |
Fraktály v počítačové grafice / Fractals in Computer GraphicsHeiník, Jan Unknown Date (has links)
This Master's thesis deals with history of Fractal geometry and describes the fractal science development. In the begining there are essential Fractal science terms explained. Then description of fractal types and typical or most known examples of them are mentioned. Fractal knowledge application besides computer graphics area is discussed. Thesis informs about fractal geometry practical usage. Few present software packages or more programs which can be used for making fractal pictures are described in this work. Some of theirs capabilities are described. Thesis' practical part consists of slides, demonstrational program and poster. Electronical slides represents brief scheme usable for fractal geometry realm lectures. Program generates selected fractal types. Thesis results are projected on poster.
|
132 |
[pt] CICLOS HETERODIMENSIONAIS DE CO- ÍNDICE DOIS E BLENDERS SIMBÓLICOS / [en] HETERODIMENSIONAL CYCLES OF CO-INDEX TWO AND SYMBOLIC BLENDERS23 December 2021 (has links)
[pt] Na primeira parte da tese, consideramos difeomorfismos com ciclos
heterodimensionais associados a um par de selas P e Q de co-índice dois.
Provamos que difeomorfismos com ciclos que possuem no mínimo um par
de autovalores centrais do ciclo não real geram ciclos heterodimensionais
robustos. Além disso, quando os autovalores centrais são não-reais, os ciclos
robustos estão associados as continuações das selas iniciais (ou seja, os
ciclos podem ser estabilizados). Na segunda parte deste trabalho estudamos
mapas produto cruzado sobre aplicações deslocamento (do tipo Bernoulli)
com fibras contrativas e dependência Holder nos pontos da base. Provamos
que sistemas que satisfazem a propriedade de cobertura exibem blender
simbólicos. Estes blenders são generalizações do blender usual cuja principal
característica é que suas direções centrais podem ter qualquer dimensão
d maior ou igual que 1. / [en] In the first part of the thesis, we consider diffeomorphisms having heterodimensional
cycles associated with a pair of saddles P and Q of co-index
two. We prove that diffeomorphisms with cycles, which have at least one
pair of non-real central eigenvalues, generate robust heterodimensional cycles.
Moreover, when both central eigenvalues are non-real, the robust cycles
are associated with the continuation of the initial saddles (i.e. the cycle can
be stabilized). In the second part of this work we study skew product maps
over Bernoulli shifts with contracting fibers and Holder dependence on the
base points. We prove that systems satisfying the covering property exhibit
symbolic blenders. These blenders are generalizations of the usual blenders
whose main property is that their central direction may have any dimension
d greater than or equal to 1.
|
133 |
Oscilátory generující nekonvenční signály / Unconventional Signals OscillatorsHruboš, Zdeněk January 2016 (has links)
Dizertační práce se zabývá elektronicky nastavitelnými oscilátory, studiem nelineárních vlastností spojených s použitými aktivními prvky a posouzením možnosti vzniku chaotického signálu v harmonických oscilátorech. Jednotlivé příklady vzniku podivných atraktorů jsou detailně diskutovány. V doktorské práci je dále prezentováno modelování reálných fyzikálních a biologických systémů vykazujících chaotické chování pomocí analogových elektronických obvodů a moderních aktivních prvků (OTA, MO-OTA, CCII ±, DVCC ±, atd.), včetně experimentálního ověření navržených struktur. Další část práce se zabývá možnostmi v oblasti analogově – digitální syntézy nelineárních dynamických systémů, studiem změny matematických modelů a odpovídajícím řešením. Na závěr je uvedena analýza vlivu a dopadu parazitních vlastností aktivních prvků z hlediska kvalitativních změn v globálním dynamickém chování jednotlivých systémů s možností zániku chaosu v důsledku parazitních vlastností použitých aktivních prvků.
|
134 |
Chaos / ChaosVogelová, Tereza January 2012 (has links)
The existing world is becoming more disrupted and is falling apart. For its resurrection and restoration, a new way of thinking is necessary. This new type of thinking is needed to be able to open up its mind and to think about the process of thinking itself; it must understand what is happening in other systems, where processes seem to be taking place by themselves without any other visible interference. First Chaos is the title for an intermedia installation which contains 90 black and white photographs, both digital and analogue, all of which were taken between the years 2008 and 2012. Together, the photographs create one coherent piece – a kind of sculpture. They can evoke a "still film" with a non-linear, cyclical storyline, whilst the images can simultaneously function individually, without any connection to other photographs.
|
135 |
Nonlinear Dynamics and Chaos in Systems with Time-Varying DelayMüller-Bender, David 30 October 2020 (has links)
Systeme mit Zeitverzögerung sind dadurch charakterisiert, dass deren zukünftige Entwicklung durch den Zustand zum aktuellen Zeitpunkt nicht eindeutig festgelegt ist. Die Historie des Zustands muss in einem Zeitraum bekannt sein, dessen Länge Totzeit genannt wird und die Gedächtnislänge festlegt. In dieser Arbeit werden fundamentale Effekte untersucht, die sich ergeben, wenn die Totzeit zeitlich variiert wird.
Im ersten Teil werden zwei Klassen periodischer Totzeitvariationen eingeführt. Da diese von den dynamischen Eigenschaften einer eindimensionalen iterierten Abbildung abgeleitet werden, die über die Totzeit definiert wird, werden die Klassen entsprechend der zugehörigen Dynamik konservativ oder dissipativ genannt. Systeme mit konservativer Totzeit können in Systeme mit konstanter Totzeit transformiert werden und besitzen gleiche charakteristische Eigenschaften. Dagegen weisen Systeme mit dissipativer Totzeit fundamentale Unterschiede z.B. in der Tangentialraumdynamik auf. Im zweiten Teil werden diese Ergebnisse auf Systeme angewendet, deren Totzeit im Vergleich zur internen Relaxationszeit des Systems groß ist. Es zeigt sich, dass ein durch dissipative Totzeitvariationen induzierter Mechanismus, genannt resonanter Dopplereffekt, unter anderem zu neuen Arten chaotischer Dynamik führt. Diese sind im Vergleich zur bekannten chaotischen Dynamik in Systemen mit konstanter Totzeit sehr niedrig-dimensional. Als Spezialfall wird das so genannte laminare Chaos betrachtet, dessen Zeitreihen durch nahezu konstante Phasen periodischer Dauer gekennzeichnet sind, deren Amplitude chaotisch variiert. Im dritten Teil dieser Arbeit wird auf der Basis experimenteller Daten und durch die Analyse einer nichtlinearen retardierten Langevin-Gleichung gezeigt, dass laminares Chaos robust gegenüber Störungen wie zum Beispiel Rauschen ist und experimentell realisiert werden kann. Es werden Methoden zur Zeitreihenanalyse entwickelt, um laminares Chaos in experimentellen Daten ohne Kenntnis des erzeugenden Systems zu detektieren. Mit diesen Methoden ist selbst dann eine Detektion möglich, wenn das Rauschen so stark ist, dass laminares Chaos mit bloßem Auge nur schwer erkennbar ist.:1. Introduction
2. Dissipative and conservative delays in systems with time-varying delay
3. Laminar Chaos and the resonant Doppler effect
4. Laminar Chaos: a robust phenomenon
5. Summary and concluding remarks
A. Appendix / In systems with time-delay, the evolution of a system is not uniquely determined by the state at the current time. The history of the state must be known for a time period of finite duration, where the duration is called delay and determines the memory length of the system. In this work, fundamental effects arising from a temporal variation of the time-delay are investigated.
In the first part, two classes of periodically time-varying delays are introduced.
They are related to a specific dynamics of a one-dimensional iterated map that is defined by the time-varying delay. Referring to the related map dynamics the classes are called conservative or dissipative. Systems with conservative delay can be transformed into systems with constant delay, and thus have the same characteristic properties as constant delay systems. In contrast, there are fundamental differences, for instance, in the tangent space dynamics, between systems with dissipative delay and systems with constant delay. In the second part, these results are applied to systems with a delay that is considered large compared to the internal relaxation time of the system. It is shown that a mechanism induced by dissipative delays leads to new kinds of regular and chaotic dynamics. The dynamics caused by the so-called resonant Doppler effect is fundamentally different from the behavior known from systems with constant delay. For instance, the chaotic attractors in systems with dissipative delay are very low-dimensional compared to typical ones arising in systems with constant delay. An example of this new kind of low-dimensional dynamics is given by the so-called Laminar Chaos. It is characterized by nearly constant laminar phases of periodic duration, where the amplitude varies chaotically. In the third part of this work, it is shown that Laminar Chaos is a robust phenomenon, which survives perturbations such as noise and can be observed experimentally. Therefore experimental data is provided and a nonlinear delayed Langevin equation is analyzed. Using the robust features that characterize Laminar Chaos, methods for time series analysis are developed, which enable us to detect Laminar Chaos without the knowledge of the specific system that has generated the time series. By these methods Laminar Chaos can be detected even for comparably large noise strengths, where the characteristic properties are nearly invisible to the eye.:1. Introduction
2. Dissipative and conservative delays in systems with time-varying delay
3. Laminar Chaos and the resonant Doppler effect
4. Laminar Chaos: a robust phenomenon
5. Summary and concluding remarks
A. Appendix
|
Page generated in 0.0303 seconds