Spelling suggestions: "subject:"[een] BATTERIES"" "subject:"[enn] BATTERIES""
131 |
Manganese oxide cathodes for rechargeable batteriesIm, Dongmin 28 August 2008 (has links)
Not available / text
|
132 |
Capacity fading mechanisms and origin of the capacity above 4.5 V of spinel lithium manganese oxidesShin, Youngjoon 28 August 2008 (has links)
Not available / text
|
133 |
The design and construction of a cryostat for thermal battery investigations.Swann, Brett Matthew. January 2011 (has links)
A test cryostat was constructed to investigate the potential of a locally made thermal battery.
A thermal battery is proposed to be a useful component in the construction of future
superconducting fault current limiter (SFCL) systems. The heat generated from a SFCL
under quench conditions can be conducted into a solid nitrogen thermal battery. This is an
alternative to using a liquid cryogen which on evaporation would form a highly nonconductive
vapour layer around the SFCL and could be potentially explosive. The relevant
heat transfer mechanisms for cryostat design were analyzed to ensure that the cryostat was
capable of solidifying nitrogen and thus be used as a thermal battery. The experimental stage
was ultimately capable of reaching a temperature of 40 K. Using a resistor to mimic the
normal state of a superconductor, the performance of the thermal battery was determined by
subjecting it to transient thermal events. The effect of solid nitrogen crystal size was
investigated by performing pulse tests on solid nitrogen formed at different rates. It was
found that slowly formed solid nitrogen performed better and stabilised the resistor’s
temperature more quickly. The phenomenon of ‘dry-out’ was also investigated for different
formation rates by subjecting the solid nitrogen to multiple heating pulses. It was found to
become very significant after the first pulse when using quickly formed solid nitrogen, but
did not manifest in slowly formed solid nitrogen. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2011.
|
134 |
Stability of sodium electrodeposited from a series of room temperature chloroaluminate molten saltsGray, Gary E. 05 1900 (has links)
No description available.
|
135 |
Nickel-Seeded Silicon Nanowires Grown on Graphene as Anode Material for Lithium Ion BatteriesElsayed, Abdel Rahman 12 May 2015 (has links)
There is a growing interest for relying on cleaner and more sustainable energy sources due to the negative side-effects of the dominant fossil-fuel based energy storage and conversion systems. Cleaner, electrochemical energy storage through lithium-ion batteries has gained considerable interest and market value for applications such as electric vehicles and renewable energy storage. However, capacity and rate (power) limitations of current lithium-ion battery technology hinder its ability to meet the high energy demands in a competitive and reliable fashion.
Silicon is an element with very high capacity to Li-ion storage although commercially impractical due to its poor stability and rate capabilities. Nevertheless, it has been heavily researched with more novel electrode nanostructures to improve its stability and rate capability. It was found that silicon nanomaterials such as silicon nanowires have inherently higher stability due to mitigation of cracking and higher rate capability due to the short Li-ion diffusion distance. However, electrode compositions based only on silicon nanowires without additional structural features and a high conductive support do not have enough stability and rate capability for successful commercialization. One structural and conductive support of silicon materials studied in literature is graphene. Graphene-based electrodes have been reported as material capable of rapid electron transport enabling new strides in rate capabilities for Li ion batteries.
This thesis presents a novel electrode nanostructure with a simple, inexpensive, scalable method of silicon nanwire synthesis on graphene nanosheets via nickel catalyst. The research herein shows the different electrode compositions and variables studied to yield the highest achievable capacity, stability and rate capability performance. The carbon coating methodology in addition to enhancing the 3D conductivity of the electrode by replacing typical binders with pyrolyzed polyacrylonitrile provided the highest performance results.
|
136 |
Self-discharge of Rechargeable Hybrid Aqueous BatteryKonarov, Aishuak 05 1900 (has links)
This thesis studies the self-discharge performance of recently developed rechargeable hybrid aqueous batteries, using LiMn2O4 as a cathode and Zinc as an anode. It is shown through a variety of electrochemical and ex-situ analytical techniques that many parts of the composite cathode play important roles on the self-discharge of the battery. It was determined that the current collector must be passive towards corrosion, and polyethylene was identified as the best option for this application. The effect of amount and type of conductive agent was also investigated, with low surface area carbonaceous material giving best performances. It was also shown that the state of charge has strong effects on the extension of self-discharge. More importantly, this study shows that the self-discharge mechanism in the ReHAB system involves the cathode active material and contains a reversible and an irreversible part. The reversible portion is predominant and is due to lithium re-intercalation into the LiMn2O4 spinel framework, and results from Zn dissolution into the electrolyte, which drives the Li+ ions out of the solution. The irreversible portion of the self-discharge occurs as a result of the decomposition of the LiMn2O4 material in the presence of the acidic electrolyte, and is much less extensive than the reversible process.
|
137 |
Binder-free oxide nanotube electrodes for high energy and power density 3D Li-ion microbatteries / Titanbaserade nanotuber för tredimensionella elektoder i litiumjonbatterierIhrfors, Charlotte January 2014 (has links)
This thesis covers synthesis and characterisation of TiO2 nanotubes and TiO2 / Li4Ti5O12 composite nanotubes. The aim was to build batteries with high areal capacity and good rate capability. TiO2 nanotubes were synthesized by two step anodization of titanium metal foil and the composite electrodes were synthesized through electrochemical lithiation of TiO2 nanotubes. To improve the battery performance the TiO2 nanotubes were annealed at 350 °C in air atmosphere, while the composite electrodes were annealed in argon at 550 °C. The longest TiO2 nanotubes were measured to 42.5 μm. The 40 μm long nanotubes displayed an areal capacity of 1.0 mAh/cm2 and a gravimetric capacity of 89 mAh/g. Nanotubes having a length of 10 μm had an areal capacity of 0.33 mAh/cm2 and a gravimetriccapacity of 130 mAh/g. When cycled at high rates, 10C, the capacity of the 40 μm nanotubes was 0.25 mAh/cm2, using a current density of 9.3 mA. The capacity of the 40 μm long nanotubes were higher than for the 10 μm long, but the increase was not proportional to the increase in length. A composite electrode was successfully synthesized and was found to have a capacity of 0.25 mAh/cm2 at a rate of C/5.
|
138 |
Structural Changes in Lithium Battery Materials Induced by Aging or UsageEriksson, Rickard January 2015 (has links)
Li-ion batteries have a huge potential for use in electrification of the transportation sector. The major challenge to be met is the limited energy storage capacity of the battery pack: both the amount of energy which can be stored within the space available in the vehicle (defining its range), and the aging of the individual battery cells (determining how long a whole pack can deliver sufficient energy and power to drive the vehicle). This thesis aims to increase our knowledge and understanding of structural changes induced by aging and usage of the Li-ion battery materials involved. Aging processes have been studied in commercial-size Li-ion cells with two different chemistries. LiFePO4/graphite cells were aged under different conditions, and thereafter examined at different points along the electrodes by post mortem characterisation using SEM, XPS, XRD and electrochemical characterization in half-cells. The results revealed large differences in degradation behaviour under different aging conditions and in different regions of the same cell. The aging of LiMn2O4-LiCoO2/Li4Ti5O12 cells was studied under two different aging conditions. Post mortem analysis revealed a high degree of Mn/Co mixing within individual particles of the LiMn2O4-LiCoO2 composite electrode. Structural changes induced by lithium insertion were studied in two negative electrode materials: in Li0.5Ni0.25TiOPO4 using in situ XRD, and in Ni0.5TiOPO4 using EXAFS, XANES and HAXPES. It was shown that Li0.5Ni0.25TiOPO4 lost most of its long-range-order during lithiation, and that both Ni and Ti were involved in the charge compensation mechanism during lithiation/delithiation of Ni0.5TiOPO4, with small clusters of metal-like Ni forming during lithiation. Finally, in situ XRD studies were also made of the reaction pathways to form LiFeSO4F from two sets of reactants: either FeSO4·H2O and LiF, or Li2SO4 and FeF2. During the heat treatment, Li2SO4 and FeF2 react to form FeSO4·H2O and LiF in a first step. In a second step LiFeSO4F is formed. This underlines the importance of the structural similarities between LiFeSO4F and FeSO4·H2O in the formation process of LiFeSO4F.
|
139 |
Thin film carbon for lithium ion batteries /Slaven, Simon. January 1996 (has links)
Thesis (Ph.D.)--Tufts University, 1996. / Adviser: Ronald B. Goldner. Submitted to the Dept. of Electrical Engineering. Includes bibliographical references. Access restricted to members of the Tufts University community. Also available via the World Wide Web;
|
140 |
Feasibility and optimum design study of a low speed wind turbine rotor system for underground communication powerHarman, John E. January 2008 (has links)
Thesis (M.S.)--West Virginia University, 2008. / Title from document title page. Document formatted into pages; contains ix, 85 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 58-59).
|
Page generated in 0.0575 seconds