• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 106
  • 25
  • 23
  • 17
  • 3
  • 2
  • 1
  • Tagged with
  • 229
  • 229
  • 36
  • 34
  • 28
  • 28
  • 26
  • 24
  • 23
  • 22
  • 22
  • 21
  • 21
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Anomaly Detection in Heterogeneous Data Environments with Applications to Mechanical Engineering Signals & Systems

Milo, Michael William 08 November 2013 (has links)
Anomaly detection is a relevant problem in the field of Mechanical Engineering, because the analysis of mechanical systems often relies on identifying deviations from what is considered "normal". The mechanical sciences are represented by a heterogeneous collection of data types: some systems may be highly dimensional, may contain exclusively spatial or temporal data, may be spatiotemporally linked, or may be non-deterministic and best described probabilistically. Given the broad range of data types in this field, it is not possible to propose a single processing method that will be appropriate, or even usable, for all data types. This has led to human observation remaining a common, albeit costly and inefficient, approach to detecting anomalous signals or patterns in mechanical data. The advantages of automated anomaly detection in mechanical systems include reduced monitoring costs, increased reliability of fault detection, and improved safety for users and operators. This dissertation proposes a hierarchical framework for anomaly detection through machine learning, and applies it to three distinct and heterogeneous data types: state-based data, parameter-driven data, and spatiotemporal sensor network data. In time-series data, anomaly detection results were robust in synthetic data generated using multiple simulation algorithms, as well as experimental data from rolling element bearings, with highly accurate detection rates (>99% detection, <1% false alarm). Significant developments were shown in parameter-driven data by reducing the sample sizes necessary for analysis, as well as reducing the time required for computation. The event-space model extends previous work into a geospatial sensor network and demonstrates applications of this type of event modeling at various timescales, and compares the model to results obtained using other approaches. Each data type is processed in a unique way relative to the others, but all are fitted to the same hierarchical structure for system modeling. This hierarchical model is the key development proposed by this dissertation, and makes both novel and significant contributions to the fields of mechanical analysis and data processing. This work demonstrates the effectiveness of the developed approaches, details how they differ from other relevant industry standard methods, and concludes with a proposal for additional research into other data types. / Ph. D.
32

Bayesian Model Mixing for Extrapolation from an EFT Toy

Connell, Matthew 18 May 2021 (has links)
No description available.
33

Growth of Atlantic Salmon (Salmo salar) in Freshwater

Sigourney, Douglas Bradlee 01 September 2010 (has links)
Growth plays a key role in regulating ecological and population dynamics. Life history characteristics such as age at maturity, fecundity and age and size at migration are tightly linked to growth rate. In addition, size can often determine survival and individual breeding success. To fully understand the process of growth it is important to understand the mechanisms that drive growth rates. In Atlantic salmon, growth is critical in determining life history pathways. Models to estimate growth could be useful in the broader context of predicting population dynamics. In this dissertation I investigate the growth process in juvenile Atlantic salmon (Salmo salar). I first used basic modeling approaches and data on individually tagged salmon to investigate the assumptions of different growth metrics. I demonstrate the size-dependency in certain growth metrics when assumptions are violated. Next, I assessed the efficacy of linear mixed effects models in modeling length-weight relationships from longitudinal data. I show that combining a random effects approach with third order polynomials can be an effective way to model length-weight relationships with mark-recapture data. I extend this hierarchical modeling approach to develop a Bayesian growth model. With limited assumptions, I derive a relatively simple discrete time model from von Bertalanffy growth that includes a nonparametric seasonal growth function. The linear dynamics of this model allow for efficient estimation of parameters in a Bayesian framework. Finally, I investigated the role of life history in driving compensatory growth patterns in immature Atlantic salmon. This analysis demonstrates the importance of considering life history as a mechanism in compensatory growth. Information provided in this dissertation will help provide ecologists with statistical tools to estimate growth rates, estimate length-weight relationships, and forecast growth from mark-recapture data. In addition, comparisons of seasonal growth within and among life history groups and within and among tributaries should make a valuable contribution to the important literature on growth in Atlantic salmon.
34

Generalized Laguerre Series for Empirical Bayes Estimation: Calculations and Proofs

Connell, Matthew Aaron 18 May 2021 (has links)
No description available.
35

Bayesian Model Checking in Multivariate Discrete Regression Problems

Dong, Fanglong 03 November 2008 (has links)
No description available.
36

Integration of fMRI and MEG towards modeling language networks in the brain

Wang, Yingying January 2013 (has links)
No description available.
37

An Inverse Problem of Cerebral Hemodynamics in the Bayesian Framework

Prezioso, Jamie 05 June 2017 (has links)
No description available.
38

Bayesian Parameter Estimation and Inference Across Scales

Callahan, Margaret D. 30 May 2016 (has links)
No description available.
39

Diagnostic tools and remedial methods for collinearity in linear regression models with spatially varying coefficients

Wheeler, David C. 14 September 2006 (has links)
No description available.
40

Empirical tests of asset pricing models

Davies, Philip R. 17 July 2007 (has links)
No description available.

Page generated in 0.0693 seconds