• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 27
  • 22
  • 9
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 137
  • 137
  • 53
  • 31
  • 29
  • 28
  • 23
  • 23
  • 20
  • 19
  • 18
  • 18
  • 16
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Experimental and Numerical Modeling Studies for Interpreting and Estimating the p–δ Behavior of Single Model Piles in Unsaturated Sands

Sheikhtaheri, Mohamadjavad January 2014 (has links)
The design of pile foundations in conventional geotechnical engineering practice is based on the soil mechanics principles for saturated soils. These approaches are also extended to pile foundations that are placed totally or partially above the ground water table (i.e., vadose zone), where the soil is typically in a state of unsaturated condition. Such approaches lead to unrealistic estimations of the load carrying capacity and the settlement behavior of pile foundations. Some studies were undertaken in recent years to understand the influence of the matric suction towards the bearing capacity of model pile foundations placed in unsaturated fine-grained and coarse-grained soils. The conventional   and methods were modified to interpret the contribution of shaft carrying capacity of single piles in fine-grained soils (e.g., Vanapalli and Taylan 2011, Vanapalli and Taylan 2012). Also, the conventional method has been used to understand the contribution of matric suction towards the shaft resistance in unsaturated sands (Vanapalli et al. 2010). One of the key objectives of the present research study is directed to determine the contribution of matric suction towards the bearing capacity and settlement behavior of model single pile foundations in unsaturated sands. A series of single model pile load tests were performed in a laboratory environment to study the contribution of the matric suction towards the total, shaft, and base bearing capacity of the model piles with three different diameters (i.e., 38.30, 31.75, and 19.25 mm) in two unsaturated sands (i.e., a clean commercial sand and a super fine sand). Hanging column method (i.e., plexi glass water container) was used to control the matric suction values in the compacted sands in the test tank by varying the water table. The results of the testing programs indicate the significant contribution of the matric suction towards the bearing capacity of single model piles (i.e., 2 to 2.5 times of base bearing capacity and 5 times of shaft bearing capacity under unsaturated conditions in comparison with saturated condition). The test results were interpreted successfully by modifying the conventional methods for estimating the pile shaft bearing capacity (i.e., β method) and base bearing capacity (i.e., Terzaghi 1943, Hansen 1970 and Janbu 1976). In addition, semi-empirical methods were proposed for predicting the bearing capacity of single model piles using the effective shear strength parameters (i.e., c' and ϕ') and the soil-water characteristic curve (SWCC). There is a good agreement between the measured and the predicted bearing capacity of single model piles using the semi-empirical models proposed in this study. In addition, numerical investigations were undertaken using the commercial finite element analysis program SIGMA/W (Geostudio 2007) to simulate the load-displacement (i.e., p-δ) behavior of the single model piles for the two sands (i.e., clean commercial sand and super fine sand) under saturated and unsaturated conditions. An elastic-perfectly plastic Mohr-Coulomb model that takes into account the influence of the matric suction was used to simulate the load-displacement (i.e., p-δ) behavior. The numerical approach proposed in this thesis is simple and only requires the information of the effective shear strength parameters (i.e., c' and ϕ'), the elastic modulus (i.e., Esat) under saturated conditions, the soil-water characteristic curve (SWCC), and the distribution of the matric suction with respect to depth. The approaches proposed in this thesis can be extended to determine the in-situ load carrying capacity of single piles and also simulate the load-displacement (i.e., p-δ) behavior. The studies presented in this thesis are promising and encouraging to study their validity in-situ conditions. Such studies will be valuable to implement the mechanics of unsaturated soils into geotechnical engineering practice.
12

Comparative Bearing Capacity Analysis of Spread Footing Foundation on Fractured Granites

Nandi, Arpita 01 August 2011 (has links)
It is evident from several studies that ultimate bearing capacities calculated by traditional methods are conservative and subjective. For large civil structures founded on spread footings, cost-effective and safer foundation could be achieved by adopting optimum ultimate bearing capacity values that are based on an objective and pragmatic analysis. There is a pressing need to modify the existing methods for accurate estimation of the bearing capacities of rocks for spread footings. In practice, foundation bearing capacities of rock masses are often estimated using the presumptive values from Building Officials Code Administrators, National Building Code, and methods adopted by the American Association of State Highway and Transportation Officials. However, the estimated values are often not realistic, and site-specific analyses are essential. In this study, geotechnical reports and drill-log data from successful geotechnical design projects founded on a wide range of granites in eastern Tennessee were consulted. Different published methods were used to calculate ultimate bearing capacity of rock mass. These methods included Peck, Hansen and Thornburn, Hoek and Brown, Army Corps of Engineers, Naval Facilities Engineering Command, and Terzaghi's general bearing capacity equations. Wide variation was observed in the calculated ultimate bearing capacity values, which ranged over about two orders of magnitude. Only two of the methods provided realistic results when validated with plate-load test data from similar rocks.
13

Effect Of Horizontal Piles On The Soil Bearing Capacity For Circular Footing Above Cavity

Arosemena, Rafael L. 01 January 2007 (has links)
The design of foundation in normal soil conditions is governed by bearing capacity, minimum depth of foundation and settlement. However, foundation design in karst regions needs to consider an additional criterion associated to the possibility of subsurface subsidence and ravelling sinkholes. Under this environment, alternative techniques are needed to improve the subsurface soil. In this study general background information is given to understand the geological characteristics of Central Florida and why this area is considered to be a karst region and susceptible to sinkholes formation. Traditional foundation design techniques on karst regions are addressed in this paper. Finally, the use of a network of three subsurface horizontal piles is proposed and the effect on stress increase and soil bearing capacity for footing due to the horizontal piles is investigated. Finite element computer software is used to analyze the stress distribution under different conditions and the results are discussed. The objective of this study is to determine whether or not horizontal piles under a circular footing at the sinkhole site is a viable solution to reduce the stress increase in the soil induced by the footing load. The horizontal piles located at a certain depth below the center of the footing intercepts the cone of pressure due to the footing load. Also, it is the purpose of this research to determine the effect on the soil bearing capacity for footing due to the proposed horizontal piles at the sinkhole prone area. In 1983 Baus, R.L and Wang, M.C published a research paper on soil bearing capacity for strip footing above voids. In their research, a chart for soil bearing capacity for strip footing located above a void was presented. However, in this paper we present a chart for circular footing size as a function void location and a design chart for circular footing size with a network of three underground piles. The result indicates that with the horizontal piles placed above the cavity, the stress increase caused by the footing load substantially decreases as compared to the situation of no horizontal piles, thus increases the soil bearing capacity for the normal design of footing size. The approach of using the horizontal piles placed in between the footing and the subsurface cavity is a new concept that has not been experienced previously. The results are strictly based on the analytical model of finite element program. Before full implementation for the construction practice, further research and experimental work should be conducted.
14

Behaviour of strip footing on fiber-reinforced model slopes

Mirzababaei, M., Inibong, E., Mohamed, Mostafa H.A., Miraftab, M. January 2014 (has links)
No / Laboratory scale model slopes reinforced with waste carpet fibers were made in a rigid tank with dimensions of 800 mm x 300 mm x 500 mm. Bearing capacities of the strip footing rested on non-reinforced and fiber-reinforced model slopes with 1%, 3% and 5% fiber content were compared at 20% footing displacement ratio. The influence of location of footing on the bearing capacity was studied with placing the footing at different edge distances from the crest of the footing (i.e., 150 mm, 100 mm and 0). Suction probe sensors were installed at appropriate locations on the rear side of the model slope to measure the pore-water pressure generated due to the footing pressure. Results showed that fiber reinforcement increased the bearing resistance of the model slopes significantly. Inclusion of 5% fiber increased the bearing resistance by 271% compared to that of non-reinforced model slope at the footing edge distance ratio of 3. The location of footing was found to affect the load-carrying capacity of the fiber-reinforced model slope. The increase in the edge distance ratio of the footing increased the load-carrying capacity of the model slope.
15

Two dimensional experimental study for the behaviour of surface footings on unreinforced and reinforced sand beds overlying soft pockets

Mohamed, Mostafa H.A. January 2010 (has links)
This paper presents results of a comprehensive investigation undertaken to quantify the efficiency of using reinforcement layers in order to enhance the bearing capacity of soils that are characterised by the existence of localised soft pockets. Small-scale model experiments using two dimensional tank were conducted with beds created from well graded sand with mean particle size of 300 μm but prepared with different dry densities. A relatively softer material was embedded at predetermined locations within the sand beds so as to represent localised soft pockets. Various arrangements of soil reinforcement were tested and compared against comparable tests but without reinforcement. In total 42 tests were carried out in order to study the effect of the width and depth of the soft pocket, the depth of one reinforcing layer and the length and number of reinforcing layers on the soil bearing capacity. The results show clearly that the ultimate bearing capacity reduces by up to 70% due to the presence of a soft pocket. It was also noted that the proximity of the soft pocket also influenced the bearing capacity. Reinforcing the soil with a single layer or increasing the length of reinforcement is not as effective as was anticipated based on previous studies. However, bearing capacity increased significantly (up to 4 times) to that of unreinforced sand when four layers of reinforcement were embedded. The results suggest that rupture of the bottom reinforcement layer is imminent in heavily reinforced sand beds overlying soft pockets and therefore its tensile strength is critical for successful reinforcement.
16

Bearing capacity of perforated offshore foundations under combined loading

Tapper, Laith January 2013 (has links)
This thesis presents experimental work and numerical analysis that has been undertaken to assess the bearing capacity of perforated offshore foundations. Perforated foundations may be used to support subsea infrastructure, including as mudmats into which a number of perforations have been made, or as grillages which consist of a series of structurally connected strip footings. Larger gravity base foundations, such as for offshore wind turbines or oil and gas platforms, may adopt a single central perforation. The advantages of using perforated foundations can include reduced material requirements and easier offshore handling as a result of smaller weight and lower hydrodynamic forces during deployment. Limited guidance currently exists for assessing the bearing capacity of these foundation types. Bearing capacity of perforated foundations has been examined in this thesis under conditions of combined vertical, horizontal and moment loading which is typical in offshore settings. Undrained soil conditions have been considered, except for the case of grillages in which drained conditions are often most relevant. Experimental work has included centrifuge testing of ring and square annular foundations on clay, and 1g testing of grillage foundations on sand. Finite element modelling has also been undertaken to assess perforated foundation capacity. A Tresca material subroutine (UMAT) and an adaptive meshing scheme have been developed to improve the accuracy of the finite element analysis carried out. The results showed that perforated foundations can be an efficient foundation solution for accommodating combined loading. As a ratio of their vertical load capacity, perforated foundations may be able to withstand higher moment and horizontal loads compared with unperforated foundations. The experimental and numerical results have been used to develop design expressions that could be employed by practitioners to estimate the vertical and combined load bearing capacity of these foundation types.
17

Fire Resistance in Cross-laminated Timber : Brandmotstånd hos korslaminerat massiv trä

Wilinder, Per January 2010 (has links)
This report deals with the fire resistance of cross-laminated timber (CLT). Themain purpose is to verify a new model on CLT and its ability to sustain itsbearing capacity when exposed to fire. To establish this, a series of bendingtestshas been conducted in combination with fire exposure of the CLT. Twodifferent series, with different dimensions, of beams were tested (series 1 andseries 2). Four basic set-ups: CLT in tension or compression, either equippedwith fire protective covering or not. Results from the tests has been gatheredand evaluated to verify the theoretical model of the fire resistance. Evaluationwas made through analysis of the residual cross-sections of the beamsregarding charring depth and rate and moment of inertia (I).Results of the tests verify to a large extent the Design model. Externalproblems and variations in the beams themselves caused some deviations.Analysis confirmed the CLT as being more similar to other laminated productssuch as Laminated Veneer Lumber (LVL) then homogenous solid beams. BothCLT and LVL experience delamination when exposed to fire resulting in anincreased charring rate. The difference in rate when using Gypsum plaster as aprotective barrier against the fire exposure is also equal to LVL.The results of the report will be used in the new version of the EuropeanStandard, Euro Code 5 and in the third edition of Fire Safe Timber Buildings.Charring rates proved to be less than expected but the CLTs ability to withstandfire while keeping its bearing capacity
18

Bearing Capacity of I-Joists

Islam, Amjad, Nwokoli, Stephen U., Debebe, Tatek January 2011 (has links)
This work deals with the bearing capacity of wood based I-joists Finite element models were analyzed to determine the bearing capacity of I-joists, using the finite element software Abaqus CAE. The purpose of this study is to compare the results from the developed FE-models with experimental results, and with a previously proposed design formula. To perform the analyses finite element models were created. The model consists of three parts:, the web (made of shell element), the flanges and steel plates used at the supports and loading points (made of solid elements) To determine the bearing capacity of the I-joist two types of analyses were performed, a linear buckling analysis to check the risk of web buckling and a static (stress) analysis to check the risk of splitting of the flanges. This study shows that the steel plate length, in some cases, has little or no impact on primarily the splitting load. Furthermore, the buckling load decreases as the depth of the beam increases, the influence of the depth being proportional to 1/h2. The depth of the beam has no impact on the risk of splitting of the flange.
19

Geosynteter för hållbara vägar : Modell för jämförelse av vägöverbyggnader med eller utan geotextiler och/eller geonät

Fedorova, Katja January 2011 (has links)
The different material layers as part of a road construction fill all a function so theroad becomes durable, safe, comfortable and aesthetically pleasing. Recently, anew group of construction materials started to play an important role in roadconstruction – geosynthetics. This thesis addresses the two most common types ofgeosynthetics used in modern road construction, namely geogrids and geotextiles.The most common use of geogrids is reinforcement of poor subgrade by usinggeogrid soil reinforcement, which occurs when road material particles wedge inthe geogrid’s mesh. Geotextiles act partly as a barrier that prevents the finermaterial in the below ground from being mixed with coarser upper material andalso act as a load spreader.Road contractors often face a choice of whether geogrids and/or geotextiles areappropriate in a particular road project and also how much profit the choice mightbring. This phase in the tender calculation process is the intended scope of thisthesis. The thesis deals with both the "hard" cost-function aspects and the "softer" values e.g. ecology and social aspects. To facilitate the comparison, a comparative modelwas developed. The comparison is done for two different cases: Case A – roadconstruction on the bank and Case B – road construction in hill cutting. In Case A “with geogrid”, the amount of trenching becomes smaller due to saving ofreinforcement layer thickness.The completed cost comparison indicates an opportunity for significant savings forroad contractors that choose to strengthen the road’s superstructure with geogrid. In Case A “with geotextile”, no trenching saving is likely, but instead, bearingcapacity improvement is a long term financial gain. An estimated cost for Case B “hill cutting road”, is approximately SEK 600 000 which is less than the cheapestcase i.e. Case A “with geogrid”. After the use of geogrids, the function changes are as following: Traffic load distribution on the terrace has increased and lateral landmovements have reduced Filling material density has increased due to geogrid wedging mechanism Frictional resistance has increased due to the fact that pavement materialparticles have been extended due to geogrid’s wedging mechanism Superstructure’s total thickness has been reduced due reinforcement layerthickness’s reduction After the use of geogrids, the function changes are as following: The composition and function of the road pavement and terrace materialremains intact. (The words "remains intact" run true to the concept of"functional change" but in this case, it is meant that the materialcomposition and function could have been worse if not properly chosengeotextile was added to the design). The scenario "gritty mud" is avoided if the geotextile has been enteredcorrectly with the right overlap. Results concerning the ecological aspects show that the trenching reduction due touse of geogrids leads to fewer ground motion, lesser soil degradation and fewerenvironmental harmful emissions because the use of road construction equipmentdeclines. Reduced distribution excavation thanks to geotextiles leads to both thesame advantages as in the sentence above and partly to the fact that the amount ofmaterials that need become deposited decreases. In addition, the risk ofgroundwater lowering due to artificial drainage ditch is minimized. The road'stotal life cycle is extended, which contributes to reducing the environmentalimpacts arising from road repair and construction of a new road if the old onestops fulfilling its function. Degradation of geogrids and geotextiles is notenvironmentally harmful, but takes a long time in natural conditions, which meansthat in practice, the use must be documented and taken care of (regarding finalcombustion in a prudent manner).Regarding social sustainability, the following conclusion could be drawn: a roadthat has a higher carrying capacity leads to higher traffic safety due to minimalsubsidence, track formation and cracking. Road safety is seen by citizens not onlyas something that the private motorists are responsible for but also something thatroad authorities should consider when planning for a socially sustainable society.Another conclusion is road maintenance frequency and hereby the taxpayers' longtermeconomic gain. The road extended total life cycle contributes to the reductionof road repairs and new construction of roads. In other words, it is not just “oneroad construction company” that wins economically by minimizing their warrantywork. The discussion concerns the cases where geosynthetics are not economicallyoptimal bearing capacity choice, such as solid rock cutting or a stretch of roadwhich has weaker parties but for which, a filling material yet compensates for theexcavated. The report concludes with a special discussion of the Swedishgeosynthetics research. The geosynthetics industry is controlled by private actors(developers, manufacturers and others) and contractors who do not like releasinginformation that might reduce their competitiveness. Therefore, the independentresearcher’s role has been quite weak and mostly reduced to “play ‘catch-up’insofar as investigating the nuances of how geosynthetics work "(Koerner, 2005). Another reason for the lack of reports on geosynthetics benefit is the long term asa sharp research project takes to plan, implement, control and evaluate. WhilstTrafikverket’s and local municipalities’ play the leading role in the Swedish roadconstruction industries, it should be in their interest to start taking geosyntheticsmore seriously by implementing credible tests and full scale trials and publishpractically applicable documents based on objective tests of structures containing geosynthetics.
20

Fire Resistance in Cross-laminated Timber : Brandmotstånd hos korslaminerat massiv trä

Wilinder, Per January 2010 (has links)
<p>This report deals with the fire resistance of cross-laminated timber (CLT). Themain purpose is to verify a new model on CLT and its ability to sustain itsbearing capacity when exposed to fire. To establish this, a series of bendingtestshas been conducted in combination with fire exposure of the CLT. Twodifferent series, with different dimensions, of beams were tested (series 1 andseries 2). Four basic set-ups: CLT in tension or compression, either equippedwith fire protective covering or not. Results from the tests has been gatheredand evaluated to verify the theoretical model of the fire resistance. Evaluationwas made through analysis of the residual cross-sections of the beamsregarding charring depth and rate and moment of inertia (I).Results of the tests verify to a large extent the Design model. Externalproblems and variations in the beams themselves caused some deviations.Analysis confirmed the CLT as being more similar to other laminated productssuch as Laminated Veneer Lumber (LVL) then homogenous solid beams. BothCLT and LVL experience delamination when exposed to fire resulting in anincreased charring rate. The difference in rate when using Gypsum plaster as aprotective barrier against the fire exposure is also equal to LVL.The results of the report will be used in the new version of the EuropeanStandard, Euro Code 5 and in the third edition of Fire Safe Timber Buildings.Charring rates proved to be less than expected but the CLTs ability to withstandfire while keeping its bearing capacity</p>

Page generated in 0.047 seconds