Spelling suggestions: "subject:"[een] BEARINGS"" "subject:"[enn] BEARINGS""
111 |
Numerical Simulation of Hydrodynamic Bearings with Engineered Slip/No-Slip SurfacesFortier, Alicia Elena 30 July 2004 (has links)
The no-slip boundary condition is the foundation of traditional lubrication theory. It says that fluid adjacent to a solid boundary has zero velocity relative to that solid surface. For most practical applications the no-slip boundary condition is a good model for predicting fluid behavior. However, recent experimental research has found that for special engineered surfaces the no-slip boundary condition is not applicable. Measured velocity profiles suggest that slip is occurring at the interface. In the present study, it is found that judicious application of slip to a bearings surface can lead to improved bearing performance.
The focus of this thesis is to analyze the effect an engineered slip/no-slip surface could have on hydrodynamic bearing performance. A heterogeneous pattern is applied to the bearing surface in which slip occurs in certain regions and is absent in others. Analysis is performed numerically for both plane pad slider bearings and journal bearings. The performance parameters evaluated for the bearings are load carrying capacity, side leakage rate and friction force. Fluid slip is assumed to occur according to the Navier relation and the effect of a critical value for slip onset is considered.
|
112 |
MANUFACTURING OF A GAS FOIL BEARINGS FOR PALMED-SIZED TURBOMACHINERYCreary, Andron 2009 May 1900 (has links)
Compliant Air Foil Bearings are used in a wide variety of applications. The
versatility, ease of manufacture, and low cost of foil bearings are a few of the reasons
foil bearing have been so thoroughly researched.
Miniaturization of gas foil bearings has been explored using silicon parts with
marginal success. An approach utilizing a well known micro-fabrication technique called
LIGA (German acronym meaning Lithography, Electroplating, and Molding) is
suggested as an alternative method. X-ray LIGA and UV-LIGA were explored and
elastic foundations 200?m and 1mm in depth were made for an impulse turbine test
setup. The main difference in between the two methods is resolution and depth that each
is capable of producing. In addition, precision machine forming was used to create a top
foil for the foil bearing.
The predicted performance of the bearing was investigated through the orbit
simulation method. A parametric study based on preload, as well as loss factor, was
conducted in which the rotor speed was varied and the responses were used to create
cascade plots. Both the response and cascade plots are useful to determine the onset of instability and the maximum operating speed of the foil bearing manufactured through
LIGA. The unique features of the gas foil bearing introduced provide great promise in
terms of its application considering the high stable operating speed is just above 1000
krpm.
|
113 |
Measurements versus Predictions for a Hybrid (Hydrostatic plus Hydrodynamic Thrust Bearing for a Range of Orifice DiametersEsser, Paul R. 2010 May 1900 (has links)
A fixed geometry hybrid thrust bearing is investigated with three different supply
orifice diameters. The test rig uses a face-to-face thrust bearing design, with the test
bearing acting as the rotor loading mechanism. A hydraulic shaker applies the static
axial load, which is reacted by a second thrust bearing. The rotor is supported radially
by two water-lubricated fluid film journal bearings and is attached to a 30,600 rpm
motor via a high speed coupling with very low axial stiffness. Thrust bearings with
three different orifice diameters (1.63, 1.80, and 1.93 mm) are tested for a range of
supply pressures, fluid film thicknesses, and rotational speeds. The water-lubricated test
bearings have eight pockets, with feed orifices located centrally in each pocket.
Experimental results are comparted to predictions found using bulk flow model
HYDROTHRUST.
Analysis of the data reveals generally good agreements between predictions and
measurements. Thrust-bearing inlet supply and inner radius flow rates all decreased
with decreasing orifice diameters and bearing axial clearances. In most cases, the
bearings with larger orifice diameters exhibit higher recess pressure ratios, operating clearances, and flow rates. The largest orifice diameter configuration does not display
higher recess pressure ratios or operating clearances at high speeds for some supply
pressures, but it does continue to require additional lubricant flow rate compared to the
smaller orifice bearings. In these cases, the results are not reflected in predictions, which
otherwise correlate very well with experimental measurements. Estimations of static
loading axial stiffness are obtained using experimental results.
An optimum hybrid thrust bearing orifice diameter will depend on the conditions
of individual applications. Larger orifices generally provide larger operating clearances
and higher stiffnesses, but also require higher flow rates. For most applications, a
compromise of bearing performance parameters will be desired. The test results and
comparisons presented will aid in sizing orifice diameters for future hybrid thrust
bearing designs.
|
114 |
Effect of Cooling Flow on the Operation of a Hot Rotor-Gas Foil Bearing SystemRyu, Keun 2011 December 1900 (has links)
Gas foil bearings (GFBs) operating at high temperature rely on thermal management procedures that supply needed cooling flow streams to keep the bearing and rotor from overheating. Poor thermal management not only makes systems inefficient and costly to operate but could also cause bearing seizure and premature system destruction. To date, most of thermal management strategies rely on empirically based "make-and-break" techniques which are often inefficient.
This dissertation presents comprehensive measurements of bearing temperatures and shaft dynamics conducted on a hollow rotor supported on two first generation GFBs. The hollow rotor (1.36 kg, 36.51 mm OD and 17.9 mm ID) is heated from inside to reach an outer surface temperature of 120 degrees C. Experiments are conducted with rotor speeds to 30 krpm and with forced streams of air cooling the bearings and rotor. Air pressurization in an enclosure at the rotor mid span forces cooling air through the test GFBs. The cooling effect of the forced external flows is most distinct when the rotor is hottest and operating at the highest speed. The temperature drop per unit cooling flow rate significantly decreases as the cooling flow rate increases. Further measurements at thermal steady state conditions and at constant rotor speeds show that the cooling flows do not affect the amplitude and frequency contents of the rotor motions. Other tests while the rotor decelerates from 30 krpm to rest show that the test system (rigid-mode) critical speeds and modal damping ratio remain nearly invariant for operation with increasing rotor temperatures and with increasing cooling flow rates. Computational model predictions reproduce with accuracy the test data. The work adds to the body of knowledge on GFB performance and operation and provides empirically derived guidance for successful integration of rotor-GFB systems.
|
115 |
Rotordynamic performance of a rotor supported on bump-type foil bearings: experiments and predictionsRubio Tabares, Dario 16 August 2006 (has links)
Gas foil bearings (GFB) appear to satisfy most requirements for oil-free
turbomachinery, i.e. relatively simple in construction, ensuring low drag friction and
reliable high speed operation. However, GFBs have a limited load capacity and minimal
amounts of damping. A test rig for the rotordynamic evaluation of gas foil bearings was
constructed. A DC router motor, 25 krpm max speed, drives a 1.02 kg hollow rotor
supported on two bump-type foil gas bearings (L = D = 38.10 mm). Measurements of
the test rotor dynamic response were conducted for increasing mass imbalance
conditions. Typical waterfalls of rotor coast down response from 25 krpm to rest
evidence the onset and disappearance of severe subsynchronous motions with whirl
frequencies at ~ 50% of rotor speed, roughly coinciding with the (rigid mode) natural
frequencies of the rotor-bearing system. The amplitudes of motion, synchronous and
subsynchronous, increase (non) linearly with respect to the imbalance displacements.
The rotor motions are rather large; yet, the foil bearings, by virtue of their inherent
flexibility, prevented the catastrophic failure of the test rotor. Tests at the top shaft speed,
25 krpm, did not excite subsynchronous motions. In the experiments, the
subsynchronous motion speed range is well confined to shaft speeds ranging from 22
krpm to 12 krpm. The experimental results show the severity of subsynchronous motions
is related to the amount of imbalance in the rotor. Surprisingly enough, external air
pressurization on one side of the foil bearings acted to reduce the amplitudes of motion
while the rotor crossed its critical speeds. An air-film hovering effect may have
enhanced the sliding of the bumps thus increasing the bearings damping action. The
tests also demonstrate that increasing the gas feed pressure ameliorates the amplitudes of subsynchronous motions due to the axial flow retarding the circumferential flow velocity
development. A finite element rotordynamic analysis models the test rotor and uses
predicted bearing force coefficients from the static equilibrium GFB load analysis. The
rotordynamic analysis predicts critical speeds at ~8 krpm and ~9 krpm, which correlate
well with test critical speeds. Predictions of rotordynamic stability are calculated for the
test speed range (0 to 25 krpm), showing unstable operation for the rotor/bearing system
starting at 12 krpm and higher. Predictions and experimental results show good
agreement in terms of critical speed correlation, and moderate displacement amplitude
discrepancies for some imbalance conditions. Post-test inspection of the rotor evidenced
sustained wear at the locations in contact with the bearings' axial edges. However, the
foil bearings are almost in pristine condition; except for top foil coating wear at the
bearing edges and along the direction of applied static load.
|
116 |
Vibration of rotating-shaft design spindles with flexible bases /Tseng, Chaw-Wu. January 2002 (has links)
Thesis (Ph. D.)--University of Washington, 2002. / Vita. Includes bibliographical references (leaves 72-74).
|
117 |
Design and analysis of a composite flywheel preload loss test rigPreuss, Jason Lee 30 September 2004 (has links)
Flywheel energy storage units have become a viable alternative to electrochemical batteries in applications such as satellites, uninterrupted power supplies, and hybrid vehicles. However, this performance is contingent upon safe operation since these flywheels can release their stored energy almost instantaneously upon failure. The research presented here investigates a health monitoring technology that may give an early indication of degraded material properties in a concentric ring composite flywheel. The existence of degraded material properties is manifested as a change in mass eccentricity due to asymmetric growth of the outermost flywheel ring. A test rig concept to investigate the technology is developed in detail using a systems engineering design process. Successful detection of the change in mass eccentricity was verified analytically through dynamic modeling of the flywheel rotor and magnetic suspension system. During steady state operation detection was determined to be feasible via measurements of the magnetic bearing currents and shaft position provided by the magnetic suspension feedback sensors. A rotordynamic analysis was also conducted and predicts successful operation to the maximum operating speed of 50,000 Rpm.
|
118 |
Symmetry reduction of Reynold's equation and applications to film lubricationAbell, Martha Louise 08 1900 (has links)
No description available.
|
119 |
Fault signature detection for rolling element bearings in electric machinesStack, Jason R. 12 1900 (has links)
No description available.
|
120 |
Constitutive laws for gas lubricated triboelementsMiller, Bradley A. 12 1900 (has links)
No description available.
|
Page generated in 0.0566 seconds