• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 765
  • 563
  • 153
  • 98
  • 59
  • 59
  • 41
  • 40
  • 40
  • 34
  • 28
  • 22
  • 12
  • 9
  • 8
  • Tagged with
  • 2171
  • 461
  • 263
  • 202
  • 187
  • 163
  • 155
  • 145
  • 144
  • 133
  • 121
  • 111
  • 106
  • 105
  • 103
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Saisonalitäten im Obligationenmarkt

Hanimann, Corinne. January 2007 (has links) (PDF)
Master-Arbeit Univ. St. Gallen, 2007.
162

Bimetallic actinide complexes for small molecule activation

Wells, Jordann Ashley Logan Slovenne Denis January 2018 (has links)
The work described in this thesis concerns the synthesis of actinide complexes and their reactivity towards small unsaturated molecules. Complexes bearing tetraphenoxide, borohydride and boroxide ligands have been evaluated. Additionally, work towards the synthesis of heterobimetallic uranium transition metal complexes and their applications in catalysis is discussed. Chapter one reviews important organoactinide complexes reported in the literature which effect chemical transformations on small unsaturated substrates. Actinide complexes supported by aryloxide or borohydride ligands are reviewed, along with actinide complexes in which metal p-arene interactions are present. Chapter two reports the synthesis and characterisation of a set of tetraphenol ligands, in addition to a number of attempted synthetic routes to tetraphenol ligands with alternate substitution. The chemistry of those tetradentate aryloxide ligands is introduced with bimetallic uranium(IV) and thorium(IV) complexes using different An(IV) and U(III) precursors. Chapter three reports the synthesis and characterisation of monometallic uranium and thorium complexes using a tetraphenol ligand. The varying chemistry between the two similar An(IV) ions, where the uranium complexes exist as a mixture of oligomers and the thorium complexes remain as well defined mononuclear complexes, is discussed within. A range of base adducts of mononuclear actinide complexes are reported, including a thorium trimethylsilylazide complex, a rare example of a metal organoazide. Chapter four describes the synthesis of homoleptic boroxide and heteroleptic borohydride complexes of uranium(III). The reactivities of these complexes with small unsaturated molecules are assessed, including the reaction of a low coordinate uranium(III) boroxide complex towards CO2 to provide a dinuclear uranium carbonate bridged complex. Chapter five introduces work towards heterobimetallic uranium transition metal complexes carried out in the Arnold group. The application of these complexes towards ring opening polymerisation chemistry is discussed in addition to investigations into the incorporation of transition metals into uranium(IV) complexes. Chapter Six presents the detailed experimental methods used to carry out this research.
163

Theory and Applications of Aryl CH Hydrogen Bonds in Arylethynyl Receptors

Tresca, Blakely 21 November 2016 (has links)
Design of selective non-covalent binding systems for chemical and biological recognition requires an intimate understanding of the factors that control the strength of each interaction. Weak interactions such as anion-Π, Π-Π, and CH-Π are understood to be important contributors to the overall binding of ligands, however, these interactions are almost purely electrostatic. Aryl CH hydrogen bond donors are a recent addition to the field and provide new possibilities by introducing a partial covalent character, which imparts greater directionality and acceptor preference. CH hydrogen bonds, and other similar weakly polarized donors, are an exciting development in supramolecular chemistry because of their ubiquity, stability and structural diversity. The use of experimental and computational techniques in this dissertation has provided us with a new understanding of the energetic factors that control CH hydrogen bond strength and selectivity for anion binding. 2,6-bis(2-anilinoethynyl) receptors with an aryl CH donor as the central arene act as anion receptors with one CH hydrogen bond and four supporting NH hydrogen bonds around a semi-preorganized pocket. The scaffold provides an efficient route to substitution para to the donor, which allows for tuning of optoelectronic properties and the measurement of linear free energy relationships (LFERs) on anion binding. Association constants with anions, Cl<sup>-</sup>, Br<sup>-</sup>, I<sup>-</sup>, NO3<sup>-</sup>, were measured by <sup>1</sup>H NMR and UV-vis spectroscopy in water saturated chloroform. The solution data was combined with calculated and empirical measurements to provide LFERs and identify an anion dependent substituent character. The importance of substituent resonance or inductive character has been further probed by measuring the isotope effect of selective monodeuteration. Solution measurement of a normal equilibrium isotope effect points to the role of covalency in this non-traditional hydrogen bond. The application of this new understanding to developing fluorescent probes for biological and environmental anions is demonstrated with a small receptor array. This dissertation includes both previously published and unpublished co-authored material.
164

The Behavior Study on Individual Investors in China’s Bond Market

January 2016 (has links)
abstract: During the past decade, the Chinese bond market has been rapidly developing. The percentage of bond to total social funding is constantly increasing. The structure and behavior of investors are crucial to the construction of China’s bond market. Due to specific credit risks, bond market regulation usually involves in rules to control investor adequancy. It is heatedly discussed among academia and regulators about whether individual investors are adequate to directly participate in bond trading. This paper focuses on the comparison between individual and institutional bond investors, especially their returns and risks. Based on the comparison, this paper provides constructive suggestions for China’s bond market development and the bond market investor structure. / Dissertation/Thesis / Doctoral Dissertation Business Administration 2016
165

Parental Incarceration: Does Having Minor Children Have an Effect on Recidivism?

January 2016 (has links)
abstract: Many parents are incarcerated, and most are eventually released. Parents that have to return home from prison may encounter difficulties adjusting to being a parent on the outside. Two competing criminological theories – social control and strain – build the framework for two pathways after release from prison – desistance or recidivism. The principal question of this study examines how being a parent to a minor child has an effect on the reentry pathways, and an interaction between being a parent and gender tests the differences between mothers and fathers. Existing studies have produced mixed results with some studies suggesting that minor children are a protective factor, and some suggesting the struggles of returning parents. Research has also shown that incarcerated mothers and fathers experience their incarceration differently, and it is surmised that this would have an impact on their reentry. Data used in this study were obtained through structured interviews with 952 inmates housed in the Arizona Department of Corrections in 2010 (n= 517 males (54%); n= 435 females (46%)). Logistic regression models show that having at least one minor child does not significantly impact the reentry outcomes for parents as compared to nonparents. In addition, the interaction between minor children and gender was also not significant – there were no differences between mothers and fathers. The statistically insignificant findings most likely show the cancelling effects of two distinct pathways for reentry. Implications of the findings are discussed below. / Dissertation/Thesis / Masters Thesis Criminology and Criminal Justice 2016
166

Micro-scale Fracture Testing of Graded (Pt,Ni)Al Bond Coats

Nagamani Jaya, B January 2013 (has links) (PDF)
PtNiAl bond coats are diffusion aluminide coatings deposited on superalloy based turbine blades for oxidation resistance and improved adhesion between the substrate and the YSZ thermal barrier coating on top. They are deposited by pack aluminisation, which makes their microstructure inherently graded and heterogeneous as well as replete with a variety of precipitates and second phase particles. The microstructure also continuously evolves during thermal cycling, because of interdiffusion with the substrate and the continuous loss of Al to the thermally grown oxide scale on top. During service, the bond coats are exposed to impact, thermal expansion mismatch, thermo-mechanical fatigue and inter-diffusion accompanied by phase transformation, which become leading causes of their failure. The bond coats being B2 crystal structures are known to be brittle at room temperature, due to which they are expected to fail during cooling, although they undergo plastic relaxation by creep above the BDTT. Little attention has been paid to the mechanical response of the bond coats, while a number of studies focus on optimizing their composition for oxidation resistance. The fracture properties of these coatings, in particular, are not very well understood due to the several different length scales of their complex microstructure playing a part. In this context, there is an interest in determination of the fracture toughness of bond coats under different loading and temperature conditions. In the present work, the fracture properties of bond coats is measured with micron-scale resolution using edge notched doubly clamped microbeam structures positioned at individual zones of the graded bond coat, subjected to bending. In order to extract the stress intensity factor for this new configuration and to determine the stress distribution and stability of this geometry under different loading conditions, extended finite element analysis (XFEM) is carried out. After establishing the microbeam geometry as a viable fracture toughness testing configuration, the contribution of different microstructural variables to toughening at room temperature is studied using SEM based in-situ testing. Since the exact composition and structure of the coating depends principally on the elements constituting the matrix-Pt, Ni and Al content, which themselves depend on the deposition parameters, we have examined in detail, coatings aluminised at different temperatures (increasing coating thickness), varying Al content in the pack mixture and starting Pt thicknesses during electro-deposition. These parameters are by no means exhaustive and there is wide scope to investigate the effect of other processing variables as well as their synergistic effects on the mechanical behavior of these coatings. Following this, the high temperature fracture behavior of the stand-alone coatings in tension is also studied to determine their brittle to ductile transition mechanism in the presence of a notch. While this covers the average behavior of the entire coating cross-section, such a study is important to establish the BDTT unambiguously since there are chances of under-estimation of these temperatures in the absence of a notch. Also free¬standing coatings without the underlying substrate offer respite from residual stresses influencing the results of such tests. The present study essentially consists of two distinct parts, one focused on the development of the testing technique to cover multiple length scales of any graded thin film or coating and the other on the determination of fracture properties of the bond coat using these methods. The thesis reads in the following way: Chapter 1 gives an introduction to the diffusion aluminised bond coats, with a focus on the failure mechanisms associated with them while underlying the need for small scale testing in these systems. The conditions driving failure in bond coats can be vast and varied and it is extremely difficult to pin-point a single important cause and also to develop predictive capabilities regarding their failure. This is described as the motivation for the present work, with an objective of finding the variation in fracture toughness values for PtNiAl bond coats of different coating thicknesses and Pt content across the temperature range spanning the BDTT of the sample. Chapter 2 describes in detail all the available literature on thermal barrier coatings in general, and diffusion aluminide bond coats in particular, while specifically highlighting its mechanical response to loads during service. The deposition parameters during pack aluminizing and the graded microstructure which develops as a consequence of the diffusion process are described. The material’s microstructure dictates its properties, but there has been limited work on the mechanical behavior of the coatings themselves due to the difficulty in preparation and testing of free-standing films of the same. Since the base matrix is that of β¬NiAl, and there has been extensive work reported on bulk NiAl in the literature, which is discussed next. This would serve as a benchmark for comparison with the properties of the bond coats themselves, which are expected to respond differently due to their continuously evolving and complex microstructure. A summary of the known mechanical properties of the coatings themselves is given next along with the failure mechanisms that have been proposed. Since the study deals with fracture properties, a short introduction of linear elastic fracture mechanics follows before elaborating on the various small scale fracture testing geometries that have been developed. There are specific differences between testing geometries, stress states as well as in the instrumentation between small scale and bulk fracture toughness tests, which are highlighted. Since these configurations are material and device specific, each group has worked out its own instrument capabilities and mechanics required to extract the mechanical properties of interest from these testing techniques. Due to these differences in addition to the differences in the size scales of the samples tested, the reported properties show a wide variation. Lack of standards add to the difficulty in interpretation of the data; moreover add to the controversy on whether a size effect exists for fracture, as it does for strength. All the non-standard small scale testing configurations require modeling and simulation to extract the desired properties from them, and the present study applies the XFEM to determine the stress distribution and calculate the stress intensity factors corresponding to the fracture loads recorded from experiments. An introduction to the XFEM method is given in the last part. Chapter 3 gives all the experimental and simulation procedures that were carried out in the present work. Since the bond coat properties need to be compared with their bulk counterparts, both the samples are characterized. The exact material compositions chosen for the study were plain NiAl, 2PtAl and 5PtAl among the pack aluminized coatings and bulk arc-melted PtNiAl samples with varying concentrations of Ni and Pt which matched the bond coat matrix compositions. The choice of the three coatings was made depending on the previously known information regarding their microstructure. The deposition conditions, temperature and times of annealing are listed, followed by a brief summary of the general characterization techniques used to study the microstructure of the bond coats before and after fracture testing. Since the micro-beams under bending were fabricated using a focused ion beam, and the micro-tensile specimen were machined by electro-discharge machining, both the micro-machining procedures are described. At such small length scales, conventional testing methods cannot be used and several modifications were incorporated to the testing geometries which are described in the next section which covers two principal fracture testing methods-microbeam bending and mini-tensile testing, along with the advantages and limitations of each. Modeling is an indispensable tool for determining stress distributions in such new geometric configurations involving material property variations, and details of the exact XFEM procedure that was implemented in ABAQUS is given in the last part of this chapter. Chapter 4 summarises the microstructure and indentation properties of the bond coat and bulk NiAl samples characterised using X-ray diffraction, electron microscopy and nanoindentation. XRD was used for phase identification, texture and determination of lattice parameters of the specimen, which confirmed β-NiAl (with no texture) as the matrix with the lattice parameter varying as a function of composition. The SEM-EPMA combination was used for probing the compositional and microstructural gradients, grain size and precipitate distribution across the coating cross-sections. The bond coat was found to have 4 distinct zones with the Ni:Al ratio gradually rising across its thickness. In addition to this, the four zones had very different grain sizes, precipitate type and distributions. Hardness and modulus values were reported from nanoindentation measurements across the coating thickness over a temperature range from 25 to 400˚C and were seen to follow the composition gradients in different ways based on the effect of the off-stoichiometric defects on these properties. The hardness was found to be a minimum for the zone with stoichiometric composition, as was the case in the bulk sample, while the modulus dropped continuously with increasing Ni content in the matrix. These are important to develop a one-to-one correlation with the fracture properties and to understand the micro-mechanisms of the same. Chapter 5 gets on with the specifics of the testing geometry. Since most of the variables of the testing technique were studied using simulation procedures, a large part of this chapter deals with the results from the modeling technique using XFEM. The XFEM is introduced in detail and its applicability in modeling of cracks and discontinuities and advantages over conventional FEM are explained. The material properties are taken from the nanoindentation data and the modeling assumes linear elastic fracture mechanics. As a validation measurement, a conventional three point beam is modeled in bending and the results compared with analytical solutions of the same. The three point beam bending geometry is also used as a benchmark to study the stability of the new geometry, now with fixed boundaries in place of a free ends. This is followed by the results from the modeling for different variables like mesh density, notch root radius, loading offsets, beam dimensions and crack length (a)/specimen width (W) ratios where both the stress distribution as well as KI are captured in 3-D for stationary cracks while crack trajectories are obtained for propagating cracks. The notch root radius is seen to not affect KI below ~300 nm and such notch radii are easily machinable in the FIB at lower currents. The crack trajectory from the experiments is seen to follow the direction of maximum tangential stress, which is also modeled very well in the XFEM. The contribution of KII to the measured stress intensity factor with increasing offsets is also calculated from the model. Stable cracking is seen for the clamped beam geometry, with KI dropping off beyond a critical a/W ratio. This was true even for a model assuming homogeneous, elastic properties with a flat R-curve under load control. This makes the clamped beam structure require higher loads for continued propagation of cracks. This critical ratio is dimension dependent, making a shorter thicker beam stable in comparison to a longer, slender one. This is unusual, especially in comparison to the three point bend geometry which shows stable cracking only in displacement control, specifically for large a/W ratios alone. Also superimposition of the load-displacement curves from simulations with those of experiments gives a good-fit. The experimental results are shown next to back¬up the claims made on geometric stability of such clamped structures. Digital Image Correlation is introduced as a means for direct measurement of crack opening displacements (COD) and fracture toughness without the aid of KI formulations. This also served as a cross¬check on the assumptions of linear elastic fracture mechanics (LEFM) made in the simulation and a good correlation is seen between the CODs measured experimentally and that obtained from the FEM analysis. Fracture toughness measurements of brittle materials with known KIC values, like fused silica glass and single crystal Si film from this proposed geometry are reported as additional validation of this geometry. Further the capabilities of in-situ testing using this geometry to measure R-curve and fatigue properties along with the initiation KIC values are shown via results from monotonic and cyclic loading under different conditions. Chapter 6 returns to address bond coat fracture at room temperature, which is the main objective of the present study. Fracture toughness is evaluated both ex-situ and in-situ, using clamped microbeam bending experiments across individual zones of the 5PtAl bond coat and for different initial Pt contents in the zone 2. KIC is seen to rise sharply with increasing Ni content of the matrix in the former case, from 5 to 15 MPam1/2 which is attributed to the change in defect chemistry with changing stoichiometry. Al rich NiAl is found to be more brittle due to vacancy hardening while Ni rich NiAl is known to increase the metallic character of the NiAl bond. Both Ni rich and Pt rich (Pt,Ni)Al give higher toughnesses among the coatings studied while the crack trajectories and toughening mechanisms distinctly depend on the precipitate morphology in individual zones. Alloying additions are seen to add to the complexity of the fracture behavior of bond coats by strengthening the matrix or by improving its ductility. Micro-kinking, grain boundary and precipitate bridging are seen in the crack wake as contributing factors to partial closure of the crack on unload. The influence of each of the microstructural variable on the fracture mode is dissected in detail before coming to an overall conclusion. The microbeams show controlled, stable cracking, which enable following of the crack trajectories across micron-length scales and make R-curve measurements possible. Both 2PtAl and 5PtAl compositions show a rising R-curve within the length scale of an individual microbeam tested. Size and geometric effects on real vs apparent R-curve behavior are discussed at the end of the chapter. Chapter 7 addresses a different area of high temperature fracture of bond coats, which becomes relevant in terms of determination of brittle to ductile transition temperature (BDTT) in notched specimen and in evaluating topography after failure across this temperature range. This set of tests is designed to measure fracture toughness and study the fracture mode along the temperature scale to exactly identify the BDTT for a given bond coat composition and strain rate, below which the coating undergoes brittle catastrophic fracture and beyond which it creeps and relaxes plastically at very low stresses. Notched free¬standing bond coat specimens are pulled in uni-axial tension to fracture and the stress at failure is used to calculate the average fracture toughness of the bond coat. The stress-strain curve shows linear elastic behavior upto the BDTT of the bond coat as expected, beyond which it becomes increasingly plastic. The KIC is seen to rise marginally upto 750˚C beyond which it showed a significant increase, from which the BDTT was calculated to be ~775˚C for notched samples. The KIC is not reported beyond the BDTT due to irrelevance of LEFM after macroscopic plasticity sets in. Fracture mode is seen to change from transgranular cleavage below the BDTT to void coalescence and ductile rupture beyond it. The experimental challenges, differences in the through thickness KIC’s obtained from tensile tests vis a vi bend tests (due to changing stress states and size scales), as well as mechanisms of ductile to brittle transition in the context of previously available literature are discussed. Chapter 8 gives the closure and important conclusions from the present work. It summarises the key results from the testing technique and highlights the proposed mechanisms which bring about a rising fracture toughness with both increasing Ni:Al ratio across the bond coat cross-section and across individual micro-beams themselves. Some new techniques and geometries which can be adopted for fracture property determination, on which work was initiated but not complete, are also proposed. The last part of the chapter deals with the future implications of the results found and some open threads and challenges on bond coat optimisiation for different properties, which are yet to be dealt with.
167

The importance of interest rate spreads in the international financial market

Lau, Siu Kuen 01 January 1999 (has links)
No description available.
168

The synthesis of the cyclometallated palladium complexes and their applications in olefin oligomerization and in phenylacetylene oligomerization/polymerization

Mungwe, Nothando Wandile January 2007 (has links)
Magister Scientiae - MSc / This thesis reports the synthesis of the imine ligands from Schiff base condensation reaction of aldehyde derivatives and equimolar quantities of aniline derivatives. The imine ligands spectrometry.
169

Study of bond coats for thermal barrier coating applications

Chen, Ying January 2015 (has links)
Bond coats used in thermal barrier coatings (TBCs) for gas-turbine engine applications are studied in this thesis, with a focus on oxidation behaviour, surface rumpling and stress evolution. Bond coats made of γ/γ’ Ni-Al-Pt alloys have been widely used in TBCs and it has been found that addition of platinum greatly improves the oxidation resistance of the coatings. The mechanisms behind this benefit, however, are not well understood. For this reason, the oxidation behaviour of four γ/γ’ Ni-20Al-xPt (x= 0, 5, 10 and 15 at. %) alloys at 1150 °C is studied and compared in terms of oxide spallation, oxide microstructure and growth, residual stress in the oxide scale and oxide/alloy interface morphology. The progressive increase of platinum addition into the alloys results in (1) greater resistance to oxide spallation, (2) reduction in oxidation of nickel, (3) lower stresses in the α-Al2O3 scale and (4) more planar oxide/alloy interfaces. It is found that the selective oxidation of aluminium promoted by platinum plays a central role in the evolution of the oxidation behaviour of the alloys. Surface rumpling of a NiCoCrAlY bond coat deposited on a Ni-base superalloy during cyclic oxidation at 1150 °C is studied. The extent of rumpling is found to depend on thermal history, coating thickness and exposure atmosphere. While the coating surface progressively roughens with cyclic oxidation, bulk NiCoCrAlY alloys with the same nominal composition show a much less tendency to rumple under the same thermal cycling condition. The coatings, especially the thin ones, experience substantial degradation (e.g. β to γ phase transformation and exhaustion of yttrium) induced by oxidation and coating/substrate interdiffusion during thermal exposure. The observations together suggest that rumpling is driven by the lateral growth of the thermally grown oxide (TGO) and the coating deforms in compliance with the TGO. While the dependence of rumpling development on experimental conditions is generally in agreement with the prediction of the existing model, it is suggested that the degradation of the NiCoCrAlY coating and its dependence on coating thickness need to be taken into consideration when predicting the rumpling development of NiCoCrAlY coatings. The residual stresses in a NiCoCrAlY bond coat deposited on a Ni-base superalloy are studied by X-ray diffraction using the sin2Ψ technique. The stresses at room temperature are found to be tensile; they first increase and then decrease with oxidation time. The stress develops and builds up upon cooling, predominantly within the temperature range from 1150 °C to 600 °C. Due to the limited penetration depth into the bond coat, the X-ray only probes the stress in a thin surface layer consisting of a single γ-phase formed through aluminium depletion during oxidation. Above 600 °C, the volume fraction of the β-phase in the bond coat increases with decreasing temperature. The mechanisms of stress generation in the coating are examined and discussed based on experiments designed to isolate the contribution of possible stress generation factors. It is found that the measured bond coat stresses are mainly induced by the volume change of the bond coat associated with the precipitation of the β-phase upon cooling.
170

Bond of Reinforcing Bars to Steel Fiber Reinforced Concrete (SFRC)

García Taengua, Emilio José 21 October 2013 (has links)
The use of steel fiber reinforced concrete (SFRC hereafter) is becoming more and more common. Building codes and recommendations are gradually including the positive effect of fibers on mechanical properties of concrete. How to take advantage of the higher ductility and energy absorption capacity of SFRC to reduce anchorage lengths when using fibers is not a straightforward issue. Fibers improve bond performance because they confine reinforcement (playing a similar role to that of transverse reinforcement). Their impact on bond performance of concrete is really important in terms of toughness/ductility. The study of previous literature has revealed important points of ongoing discussion regarding different issues, especially the following: a) whether the effect of fibers on bond strength is negligible or not, b) whether the effect of fibers on bond strength is dependent on any other factors such as concrete compressive strength or concrete cover, c) quantifying the effect of fibers on the ductility of bond failure (bond toughness). These issues have defined the objectives of this thesis. A modified version of the Pull Out Test (POT hereafter) has been selected as the most appropriate test for the purposes of this research. The effect of a number of factors on bond stress¿slip curves has been analyzed. The factors considered are: concrete compressive strength (between 30 MPa and 50 MPa), rebar diameter (between 8 mm and 20 mm), concrete cover (between 30 mm and 5 times rebar diameter), fiber content (up to 70 kg/m3), and fiber slenderness and length. The experimental program has been designed relying on the principles of statistical Design Of Experiments. This has allowed to select a reduced number of combinations to be tested without any bias or loss of accuracy. A total of 81 POT specimens have been produced and tested. An accurate model for predicting the mode of bond failure has been developed. It relates splitting probability to the factors considered. It has been proved that increasing fiber content restrains the risk of splitting failure. The favorable effect of fibers when preventing splitting failures has been revealed to be more important for higher concrete compressive strength values. Higher compressive strength values require higher concrete cover/diameter ratios for splitting failure to be prevented. Fiber slenderness and fiber length modify the effect of fiber content on splitting probability and therefore on minimum cover/diameter ratios required to prevent splitting failures. Two charts have been developed for estimating the minimum cover/ diameter ratio required to prevent splitting. Predictive equations have been obtained for estimating bond strength and areas under the bond stress¿slip curve as a function of the factors considered. Increasing fiber content has a slightly positive impact on bond strength, which is mainly determined by concrete compressive strength. On the contrary, fibers have a very important effect on the ductility of bond failure, just as well as concrete cover, as long as no splitting occurs. Multivariate analysis has proved that bond stress corresponding to the onset of slippage behaves independently from the rest of the bond stress¿slip curve. The effect of fibers and concrete compressive strength on bond stress values corresponding to the onset of slips is mainly attributable to their influence on the material mechanical properties. On the contrary, the effect of fibers and concrete cover on the rest of the bond stress¿slip curve is due to their structural role. / García Taengua, EJ. (2013). Bond of Reinforcing Bars to Steel Fiber Reinforced Concrete (SFRC) [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/32952 / TESIS

Page generated in 0.0354 seconds