• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 576
  • 115
  • 75
  • 58
  • 16
  • 15
  • 15
  • 15
  • 15
  • 15
  • 14
  • 13
  • 10
  • 8
  • 8
  • Tagged with
  • 1126
  • 1126
  • 304
  • 226
  • 209
  • 167
  • 160
  • 156
  • 151
  • 122
  • 111
  • 107
  • 97
  • 94
  • 93
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Experimental study on turbulent boundary-layer flows with wall transpiration

Ferro, Marco January 2017 (has links)
Wall transpiration, in the form of wall-normal suction or blowing through a permeable wall, is a relatively simple and effective technique to control the behaviour of a boundary layer. For its potential applications for laminar-turbulent transition and separation delay (suction) or for turbulent drag reduction and thermal protection (blowing), wall transpiration has over the past decades been the topic of a significant amount of studies. However, as far as the turbulent regime is concerned, fundamental understanding of the phenomena occurring in the boundary layer in presence of wall transpiration is limited and considerable disagreements persist even on the description of basic quantities, such as the mean streamwise velocity, for the rather simplified case of flat-plate boundary-layer flows without pressure gradients. In order to provide new experimental data on suction and blowing boundary layers, an experimental apparatus was designed and brought into operation. The perforated region spans the whole 1.2 m of the test-section width and with its streamwise extent of 6.5 m is significantly longer than previous studies, allowing for a better investigation of the spatial development of the boundary layer. The quality of the experimental setup and measurement procedures was verified with extensive testing, including benchmarking against previous results on a canonical zero-pressure-gradient turbulent boundary layer (ZPG TBL) and on a laminar asymptotic suction boundary layer. The present experimental results on ZPG turbulent suction boundary layers show that it is possible to experimentally realize a turbulent asymptotic suction boundary layer (TASBL) where the boundary layer mean-velocity profile becomes independent of the streamwise location, so that the suction rate constitutes the only control parameter. TASBLs show a mean-velocity profile with a large logarithmic region and without the existence of a clear wake region. If outer scaling is adopted, using the free-stream velocity and the boundary layer thickness (δ99) as characteristic velocity and length scale respectively, the logarithmic region is described by a slope Ao=0.064 and an intercept Bo=0.994, independently from the suction rate (Γ). Relaminarization of an initially turbulent boundary layer is observed for Γ&gt;3.70×10−3. Wall suction is responsible for a strong damping of the velocity fluctuations, with a decrease of the near-wall peak of the velocity-variance profile ranging from 50% to 65% when compared to a canonical ZPG TBL at comparable Reτ. This decrease in the turbulent activity appears to be explained by an increased stability of the near-wall streaks. Measurements on ZPG blowing boundary layers were conducted for blowing rates ranging between 0.1% and 0.37% of the free-stream velocity and cover the range of momentum thickness Reynolds number 10000&lt;Reθ&lt;36000. Wall-normal blowing strongly modifies the shape of the boundary-layer mean-velocity profile. As the blowing rate is increased, the clear logarithmic region characterizing the canonical ZPG TBLs gradually disappears. A good overlap among the mean velocity-defect profiles of the canonical ZPG TBLs and of the blowing boundary layers for all the Re number and blowing rates considered is obtained when normalization with the Zagarola-Smits velocity scale is adopted. Wall blowing enhances the intensity of the velocity fluctuations, especially in the outer region. At sufficiently high blowing rates and Reynolds number, the outer peak in the streamwise-velocity fluctuations surpasses in magnitude the near-wall peak, which eventually disappears. / Genom att använda sig av genomströmmande ytor, med sugning eller blåsning, kan man relativt enkelt och effektivt påverka ett gränsskikts tillstånd. Genom sin potential att påverka olika strömningsfysikaliska fenomen så som att senarelägga både avlösning och omslaget från laminär till turbulent strömning (genom sugning) eller som att exempelvis minska luftmotståndet i turbulenta gränsskikt och ge kyleffekt (genom blåsning), så har ett otaligt antal studier genomförts på området de senaste decennierna. Trots detta så är den grundläggande förståelsen bristfällig för de strömningsfenomen som inträffar i turbulenta gränsskikt över genomströmmande ytor. Det råder stora meningsskiljaktigheter om de mest elementära strömningskvantiteterna, såsom medelhastigheten, när sugning och blåsning tillämpas även i det mest förenklade gränsskiktsfallet nämligen det som utvecklar sig över en plan platta utan tryckgradient. För att ta fram nya experimentella data på gränsskikt med sugning och blåsning genom ytan så har vi designat en ny experimentell uppställning samt tagit den i bruk.Den genomströmmande ytan spänner över hela bredden av vindtunnelns mätsträcka (1.2 m) och är 6.5 m lång i strömningsriktningen och är därmed betydligt längre än vad som använts i tidigare studier. Detta gör det möjligt att bättre utforska gränsskiktet som utvecklas över ytan i strömningsriktningen. Kvaliteten på den experimentella uppställningen och valda mätprocedurerna har verifierats genom omfattande tester, som även inkluderar benchmarking mot tidigare resultat på turbulenta gränsskikt utan tryckgradient eller blåsning/sugning och på laminära asymptotiska sugningsgränsskikt. De experimentella resultaten på turbulenta gränsskikt med sugning bekräftar för första gången att det är möjligt att experimentellt sätta upp ett turbulent asymptotiskt sugningsgränsskikt där gränsskiktets medelhastighetsprofil blir oberoende av strömningsriktningen och där sugningshastigheten utgör den enda kontrollparametern. Det turbulenta asymptotiska sugningsgränsskiktet visar sig ha en medelhastighetsprofil normalt mot ytan med en lång logaritmisk region och utan förekomsten av en yttre vakregion. Om man använder yttre skalning av medelhastigheten, med friströmshastigheten och gränsskiktstjockleken som karaktäristisk hastighet respektive längdskala, så kan det logaritmiska området beskrivas med en lutning på Ao=0.064 och ett korsande värde med y-axeln på Bo=0.994, som är oberoende av sugningshastigheten. Om sugningshasigheten normaliserad med friströmshastigheten överskrider värdet 3.70x10^-3 så återgår det ursprungligen turbulenta gränsskiktet till att vara laminärt. Sugningen genom väggen dämpar hastighetsfluktuationerna i gränsskiktet med upp till 50-60% vid direkt jämförelse av det inre toppvärdet i ett turbulent gränsskikt utan sugning och vid jämförbart Reynolds tal. Denna minskning av turbulent aktivitet verkar härstamma från en ökad stabilitet av hastighetsstråken närmast ytan. Mätningar på turbulenta gränsskikt med blåsning har genomförts för blåsningshastigheter mellan 0.1 och 0.37% av friströmshastigheten och täcker Reynoldstalområdet (10-36)x10^3, med Reynolds tal baserat på rörelsemängds-tjockleken. Vid blåsning genom ytan får man en stark modifiering av formen på hastighetesfördelningen genom gränsskiktet. När blåsningshastigheten ökar så kommer till slut den logaritmiska regionen av medelhastigheten, karaktäristisk för turbulent gränsskikt utan blåsning, att gradvis försvinna. God överens-stämmelse av medelhastighetsprofiler mellan turbulenta gränsskikt med och utan blåsning erhålls för alla Reynoldstal och blåsningshastigheter när profilerna normaliseras med Zagarola-Smits hastighetsskala. Blåsning vid väggen ökar intensiteten av hastighetsfluktuationerna, speciellt i den yttre regionen av gränsskiktet. Vid riktigt höga blåsningshastigheter och Reynoldstal så kommer den yttre toppen av hastighetsfluktuationer i gränsskiktet att överskrida den inre toppen, som i sig gradvis försvinner. / <p>QC 20171101</p>
272

STUDY OF MACROTURBULENCE AND BURSTING VIA THE -1 SPECTRAL POWER LAW REGION OF TURBULENT OPEN CHANNEL FLOWS OVER GRAVEL BEDS

Ghasemi, Amirreza 01 January 2016 (has links)
The large scale and smaller production scale motions contain over the half of turbulent kinetic energy in the flow. These motions are responsible for sediment transport and deposition processes, contaminant mixing and stream bio-diversity. These motions are corresponded to the left and right bounds of -1 power region of the spectral energy. The most well recognized and highly studied power law has been upon Kolmogorov’s -5/3 power law region of the streamwise spectral energy density and this research focused on investigating the -1 power region bounds and energy. Energy budget and time-average turbulence calculations along with spectral analysis are performed to investigate the characteristics of large scale and smaller production scale motions in the flow. Spectral analyses of turbulent flows offers the utility of investigating the distribution of turbulent energy across wavenumber scales as well as identifying prominent wavenumbers at which the periodicity of coherent processes are centered. In turn, the results of spectral analyses can be coupled with visualization of coherent vortices and time-average turbulence results to advance our understanding of turbulent energy distribution and dominant processes that drive environmental phenomena such as sediment transport and solute transfer. A new method for identifying the wavenumbers associated to the macroturbulence and bursting is introduced. Also this study offers a new scaling method of energy spectral that derived from the turbulence energy model for an equilibrium boundary layer. Results of this study show an equilibrium boundary layer for the outer region of the flow in which the flow is uniform and fully-developed. Also for a given roughness, the results of this study provide an approach to calculate the streamwise turbulence kinetic energy of bursting and macroturbulence which show a linkage of this work to applications such as bedload and suspended load sediment transport.
273

Turbulence studies from a tethered balloon

Rayment, Robert January 1975 (has links)
No description available.
274

Turbulent boundary layers over receiver arrays

Dolder, Craig Nealon 03 November 2010 (has links)
A study of the fluctuating wall pressure and unsteady velocity field in a flat plate turbulent boundary layer flow was conducted over a moderate range of Reynolds numbers to better understand the mechanisms by which the two fields are coupled. Individual and coincident measurements of the fluctuating pressure and velocity fields were acquired using a 20 element hydrophone array and a two-component Laser Doppler Anemometer, respectively. Estimates of the velocity power spectral density (PSD) revealed two primary trends predicted by turbulence theory, k⁻¹ in the region of (ky) = 10⁰ due to anisotropy of the large scales, and k⁻⁵/³ for larger values of (ky) where structures appear more isotropic. The mean velocity profiles, having been collapsed using outer scaling variables, exhibited the presence of a slightly adverse pressure gradient with a n = 6 power law shape. As for the fluctuating wall pressure, increased Reynolds numbers produced increases in the amplitude and frequency of the characteristic signatures from which the pressure spectral densities were also found to collapse reasonably well using outer scaling variables. The results suggest the location in the flow where the mechanisms responsible for driving the fluctuating wall pressure signatures reside. Space-time correlations and frequency-wavenumber analysis reveal a convective ridge in the fluctuating wall pressure corresponding to the passage of several organized structures at 75% of the free stream velocity for all Reynolds numbers tested. / text
275

THE UNSTEADY VISCOUS FLOW OVER A GROOVED WALL: A COMPARISON OF TWO NUMERICAL METHODS (BIOT-SAVART, NAVIER-STOKES).

HUNG, SHI-CHANG. January 1986 (has links)
Unsteady two-dimensional laminar flow of an incompressible viscous fluid over a periodically grooved wall is investigated by numerical simulation using two independent finite-difference methods. One is the vorticity-stream function method, and the other involves the vorticity-velocity induction law formulation. The fluid motion is initiated impulsively from rest and is assumed to be spatially periodic in the streamwise direction. The flow field, which includes the time development of the shear layer and the recirculating flow in the zone of separation, is examined in detail during the transient phase to the steady-state condition. The analytical and numerical formulations, which include the implementation of the boundary conditions, are derived in detail. The generation of vorticity at the solid surfaces is modelled differently in the two approaches. This vorticity production plays an important role in determining the surface-pressure distribution and the drag coefficient. Characteristics of the transient solution for a moderate Reynolds number in the laminar range are presented. Included with the graphical results are the temporal development of the constant stream function contours, including the dividing contour between the zone of separation and the main flow, and the constant vorticity contours. These latter contours show the interactions of separated vortices. The flow is found to approach a steady-state condition comprising an undisturbed uniform flow, a nonuniform irrotational flow, a shear layer adjacent to the grooved wall, and a recirculating vortex flow in the groove. Results also include the time development of the surface shear stress, surface pressure, drag coefficient and several typical velocity profiles, which characterize the flow in the recirculating region. Comparisons of the results obtained by the two numerical methods are made during the major development of the flow. The results showing the general features of the flow development including the time development of the shear layer, free shear layer and recirculating vortex flow are in good agreement. However, a significant deviation does exist at early times for the distribution of surface pressure, which accordingly has noticeable effect on the drag coefficient. Nevertheless, the gap between the distributions of surface pressure and drag coefficients dies out gradually as time progresses. The form of the stream function and vorticity contours at the steady state agrees well with those obtained from a recent numerical investigation of the steady flow in grooved channels.
276

Numerical Investigation of Boundary-Layer Transition for Cones at Mach 3.5 and 6.0

Laible, Andreas Christian January 2011 (has links)
Transition in high-speed boundary layers is investigated using direct numerical simulation (DNS). A compressible Navier-Stokes code that is specifically tailored towards accurate and efficient simulations of boundary layer stability and boundary layer transition was developed and thoroughly validated. Particular emphasis was put into the adoption of a high-order accurate spatial discretization including a boundary closure with the same stencil width as the interior scheme. Oblique breakdown has been shown, using both temporal and spatial DNS, to be a viable route to transition for the boundary layer of the sharp 7° cone at Mach 3.5 investigated by Corke 2002. A 'wedge-shaped' transitional regime was observed to be characteristic for this type of breakdown on the cone geometry. Furthermore, it was shown that the dominance of the longitudinal mode in the nonlinear transition regime of oblique breakdown is due to a continuously nonlinear forced transient growth. That is the primary pair of oblique waves permanently 'seeds' disturbances into the longitudinal mode, where these disturbances exhibit non-modal unstable behavior. In addition to the simulations of controlled transition via oblique breakdown, six simulations have been conducted and analyzed where transition is initiated by multiple primary waves. Despite the broader spectrum of primary waves, typical features of oblique breakdown are still apparent in these simulations and therefore, it may be conjectured, that oblique breakdown initiated by one primary pair of waves is a good model for the nonlinear processes in natural transition. Furthermore, hypersonic boundary layer stability and transition for a flared and a straight cone at Mach 6 was investigated. In particular, a comparative investigation between both geometries regarding the K-type breakdown was performed in order to give some indications towards the open question how strong the nonlinear transition processis altered by the cone flare.
277

DESIGN OF A HETERODYNE INFRARED LIDAR SYSTEM FOR REMOTE SENSING OF THE ATMOSPHERIC BOUNDARY LAYER.

Waite, Larry Jack. January 1984 (has links)
No description available.
278

Coupling the planetary boundary layer to the large scale dynamics of the atmosphere : the impact of vertical discretisation

Holdaway, Daniel January 2010 (has links)
Accurate coupling between the resolved scale dynamics and sub-grid scale physics is essential for accurate modelling of the atmosphere. Previous emphasis has been towards the temporal aspects of this so called physics-dynamics coupling problem, with little attention towards the spatial aspects. When designing a model for numerical weather prediction there is a choice for how to vertically arrange the required variables, namely the Lorenz and Charney-Phillips grids, and there is ongoing debate as to which is the optimal. The Charney-Phillips grid is considered good for capturing the large scale dynamics and wave propagation whereas the Lorenz grid is more suitable for conservation. However the Lorenz grid supports a computational mode. In the first half of this thesis it is argued that the Lorenz grid is preferred for modelling the stably stratified boundary layer. This presents the question: which grid will produce most accurate results when coupling the large scale dynamics to the stably stratified planetary boundary layer? The second half of this thesis addresses this question. The normal mode analysis approach, as used in previous work of a similar nature, is employed. This is an attractive methodology since it allows one to pin down exactly why a particular configuration performs well. In order to apply this method a one dimensional column model is set up, where horizontally wavelike solutions with a given wavenumber are assumed. Applying this method encounters issues when the problem is non normal, as it will be when including boundary layer terms. It is shown that when addressing the coupled problem the lack of orthogonality between eigenvectors can cause mode analysis to break down. Dynamical modes could still be interpreted and compared using the eigenvectors but boundary layer modes could not. It is argued that one can recover some of the usefulness of the methodology by examining singular vectors and singular values; these retain the appropriate physical interpretation and allow for valid comparison due to orthogonality between singular vectors. Despite the problems in using the desirable methodology some interesting results have been gained. It is shown that the Lorenz grid is favoured when the boundary layer is considered on its own; it captures the structures of the steady states and transient singular vectors more accurately than the Charney-Phillips grid. For the coupled boundary layer and dynamics the Charney-Phillips grid is found to be most accurate in terms of capturing the steady state. Dispersion properties of dynamical modes in the coupled problem depend on the choice of horizontal wavenumber. For smaller horizontal wavenumber there is little to distinguish between Lorenz and Charney-Phillips grids, both the frequency and structure of dynamical modes is captured accurately. Dynamical mode structures are found to be harder to interpret when using larger horizontal wavenumbers; for those that are examined the Charney-Phillips grid produces the most sensible and accurate results. It is found that boundary layer modes in the coupled problem cannot be concisely compared between the Lorenz and Charney-Phillips grids due to the issues that arise with the methodology. The Lorenz grid computational mode is found to be suppressed by the boundary layer, but only in the boundary layer region.
279

Contrasting cloud composition between coupled and decoupled marine boundary layer clouds

Wang, Zhen, Mora Ramirez, Marco, Dadashazar, Hossein, MacDonald, Alex B., Crosbie, Ewan, Bates, Kelvin H., Coggon, Matthew M., Craven, Jill S., Lynch, Peng, Campbell, James R., Azadi Aghdam, Mojtaba, Woods, Roy K., Jonsson, Haflidi, Flagan, Richard C., Seinfeld, John H., Sorooshian, Armin 16 October 2016 (has links)
Marine stratocumulus clouds often become decoupled from the vertical layer immediately above the ocean surface. This study contrasts cloud chemical composition between coupled and decoupled marine stratocumulus clouds for dissolved nonwater substances. Cloud water and droplet residual particle composition were measured in clouds off the California coast during three airborne experiments in July-August of separate years (Eastern Pacific Emitted Aerosol Cloud Experiment 2011, Nucleation in California Experiment 2013, and Biological and Oceanic Atmospheric Study 2015). Decoupled clouds exhibited significantly lower air-equivalent mass concentrations in both cloud water and droplet residual particles, consistent with reduced cloud droplet number concentration and subcloud aerosol (D-p>100nm) number concentration, owing to detachment from surface sources. Nonrefractory submicrometer aerosol measurements show that coupled clouds exhibit higher sulfate mass fractions in droplet residual particles, owing to more abundant precursor emissions from the ocean and ships. Consequently, decoupled clouds exhibited higher mass fractions of organics, nitrate, and ammonium in droplet residual particles, owing to effects of long-range transport from more distant sources. Sodium and chloride dominated in terms of air-equivalent concentration in cloud water for coupled clouds, and their mass fractions and concentrations exceeded those in decoupled clouds. Conversely, with the exception of sea-salt constituents (e.g., Cl, Na, Mg, and K), cloud water mass fractions of all species examined were higher in decoupled clouds relative to coupled clouds. Satellite and Navy Aerosol Analysis and Prediction System-based reanalysis data are compared with each other, and the airborne data to conclude that limitations in resolving boundary layer processes in a global model prevent it from accurately quantifying observed differences between coupled and decoupled cloud composition.
280

Akustische Tomographie im Bereich der Atmosphärischen Grenzschicht

Raabe, Armin, Arnold, Klaus, Ziemann, Astrid 03 November 2016 (has links) (PDF)
Atmosphärenmodelle, die mit Hilfe numerischer Methoden nach einer Lösung der thermohydrodynamischen Gleichungen unter bestimmten Randbedingungen über einer vorgegebenen Unterlage (Landschaft) suchen, prognostizieren Volumenmittel entsprechender Größen. Zur Validierung der Modelle benötigte experimentell erfaßte meteorologische Größen repräsentieren meist Punktwerte. Im folgenden werden theoretische Ansätze und eine experimentelle Meßmethode vorgestellt, die es ermöglichen, volumengemittelte Werte meteorologischer Größen bereitzustellen und somit zu numerischen Atmosphärenmodellen weitgehend konsistente Daten zu liefern. Die Verfahren verwenden die horizontale Ausbreitung von Schallwellen in der Atmosphärischen Grenzschicht. Die Ableitung volumenbezogener Größen erfolgt über die Invertierung von Schallparameterwerten (akustische Tomographie). / Atmospheric models, which searching by means of numerical methods after a solution of the thermodynamic equations under determined border conditions over a given underground (landscape), forecast volume averaged values of corresponding parameters. The experimental registrated values for meteorolgical parameters used for the validation of models represent usually point values. In following chapters theoretical estimations and an experimental measuring method are presented which volume averaged values of meteorolgical parameters provide and so rather firm data for numerical atmospheric models deliver. The proceedings use horizontal spreading of acoustic waves in the Atmospheric Boundary Layer. Derivation of volume averaged parameters results from the invertation of acoustic parameter values (acoustic tomography).

Page generated in 0.0285 seconds