• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 698
  • 514
  • 168
  • 123
  • 77
  • 36
  • 23
  • 15
  • 15
  • 11
  • 10
  • 7
  • 6
  • 6
  • 6
  • Tagged with
  • 1979
  • 479
  • 339
  • 338
  • 209
  • 191
  • 186
  • 163
  • 154
  • 140
  • 128
  • 123
  • 116
  • 108
  • 106
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
821

Sulfate Resistance Of Blended Cements With Fly Ash And Natural Pozzolan

Duru, Kevser 01 September 2006 (has links) (PDF)
Numerous agents and mechanisms are known to affect the durability of a concrete structure during its service life. Examples include freezing and thawing, corrosion of reinforcing steel, alkali-aggregate reactions, sulfate attack, carbonation, and leaching by neutral or acidic ground waters. Among these, external sulfate attack was first identified in 1908, and led to the discovery of sulfate resistant Portland cement (SRPC). Besides SRPC, another way of coping with the problem of sulfate attack is the use of pozzolans either as an admixture to concrete or in the form of blended cements This study presents an investigation on the sulfate resistance of blended cements containing different amounts of natural pozzolan and/or low-lime fly ash compared to ordinary Portland cement and sulfate resistant Portland cement. Within the scope of this study, an ordinary Portland cement (OPC) and five different blended cements were produced with different proportions of clinker, natural pozzolan, low-lime fly ash and limestone. For comparison, a sulfate resistant Portland cement (SRPC) with a different clinker was also obtained. For each cement, two different mixtures with the water/cement (w/c) ratios of 0.485 and 0.560 were prepared in order to observe the effect of permeability controlled by water/cement ratio. The performance of cements was observed by exposing the prepared 25x25x285 mm prismatic mortar specimens to 5% Na2SO4 solution for 78 weeks and 50mm cubic specimens for 52 weeks. Relative deterioration of the specimens was determined by length, density and ultrasonic pulse velocity change, and strength examination at different ages. It was concluded that depending on the amount and effectiveness of the mineral additives, blended cements were considered to be effective for moderate or high sulfate environments. Moreover, the cement chemistry and w/c ratio of mortars were the two parameters affecting the performance of mortars against an attack. As a result of this experimental study it was found out that time to failure is decreasing with the increasing w/c ratio and the effect of w/c ratio was more important for low sulfate resistant cements with higher C3A amounts when compared to high sulfate resistant cements with lower C3A amounts.
822

Properties And Hydration Of Cementitious Systems Containing Low, Moderate And High Amounts Of Natural Zeolites

Uzal, Burak 01 September 2007 (has links) (PDF)
The extent of the benefits provided by use of SCMs in cementitious systems increases as their percentage amounts in total binder increases. However, the proportion of SCMs in cementitious systems is limited, especially for natural pozzolans, by some factors such as increase in water requirement and decrease in rate of strength development. Therefore investigations are needed to increase the amount of natural pozzolans in blended cements or in concrete as much as possible without decreasing their performance. This aim requires studies on cementitious systems with more reactive natural pozzolans than widely-used ones. The objective of the study was to investigate the pozzolanic activity of natural zeolites (clinoptilolite) from two localities in Turkey, and properties of cementitious systems containing low (15%), moderate (35%) and high (55%) amount of them. The study covers characterization of the natural zeolites used, evaluation of their pozzolanic activity in comparison with some popular mineral admixtures, and properties of pastes, mortars, and concrete mixtures containing low, moderate, and high amounts of natural zeolites. Reactivity of the natural zeolites with Ca(OH)2 was found to be higher than those of the fly ash and the non-zeolitic pozzolan, but lower than that of the silica fume. Natural zeolite blended cements were characterized with the following highlighted properties / faster setting than portland cement, low amounts of Ca(OH)2 and capillary pores larger than 50 nm in hardened pastes, relatively dense microstructure of hardened paste than portland cement, more compatibility with melamine-based superplasticizer than being with naphthalene-based one, and excellent compressive strength performance. Concrete mixtures containing natural zeolites as partial replacement for portland cement were characterized with the following properties / 7-day compressive strength of ~25 MPa and 28-day strength of 45-50 MPa with only 180 kg/m3 portland cement and 220 kg/m3 zeolite dosages (55% replacement), comparable modulus of elasticity with plain portland cement concrete, &ldquo / low&rdquo / and &ldquo / very low&rdquo / chloride-ion penetrability for low and large levels of replacement, respectively.
823

Effect Of Recycled Cement Concrete Content On Rutting Behavior Of Asphalt Concrete

Gul, Waqar Ahmed Waqar 01 August 2008 (has links) (PDF)
Disposed waste materials remained from demolished buildings have been an environmental problem especially for developing countries. Recycled Cement Concrete (RCC) is one of the abundant components of waste materials that include quality aggregates. Use of RCC in asphalt concrete pavements is economically a feasible option as it not only helps in recycling waste materials but also preserves natural resources by fulfilling the demand for quality aggregate in pavement constructions. However, due to variability in RCC characteristics, a detailed evaluation of its effect on asphalt concrete performance is required. In this study, effect of RCC content on rutting potential of asphalt concrete is investigated using laboratory prepared specimens. Rutting susceptibility of the specimens is determined using repeated creep tests performed in the uniaxial stress mode. Because of the aspect ratio requirements for the repeated creep test, the standard Marshall mix design procedures were modified based on the energy concept by changing the compactor device and the applied design number of blows. The modified specimens were tested to determine a number of parameters that can describe the rutting behavior of the tested mixes. The findings indicate that slope constant and flow number give relatively stronger relationships with rutting behavior as compared to the other rutting parameters. While increasing the RCC content yields improved rutting performance for coarse graded specimens, it dramatically reduces the performance for fine graded specimens.
824

Production And Characterization Of Magnesium Oxychloride Cement Based Polishing Bricks For Polishing Of Ceramic Tiles

Ozer, Muhammed Said 01 December 2008 (has links) (PDF)
Magnesium oxychloride cement (MOC) based grinding and polishing bricks developed for polishing of granite based ceramic tiles were produced and characterized. For surface grinding 46 and 180 grit size SiO2 powder embedded MOC based abrasive bricks / for polishing 600 and 1200 grit size SiC powder embedded MOC based abrasive bricks followed by neat (unreinforced) MOC pastes were applied on ceramic tiles. Three different neat MOC pastes depending on MgO/MgCl2 molar ratio in the paste e.g. 6/1, 7/1, and 8/1, were formed and evaluated. Grinding bricks were formed by adding 30 weight percentage, wt%, of both SiO2 powders. Polishing bricks were formed by adding 20, 25, and 30 wt% of both SiC powders. X-Ray diffraction analyses revealed that MOC F5 was the main crystalline phase in the neat MOC pastes. Additions of both SiO2 and SiC powders enhanced mechanical properties namely / compressive strength and abrasion resistance, chemical durability in water and polishing ability of MOC paste. More than 25 wt% addition of SiC powders had a tendency to decrease the compressive strength and water resistance of MOC paste. Polishing performance of abrasive bricks was evaluated in terms of mean surface roughness of ceramic tiles and abrasive brick consumption upon polishing. Scanning Electron Microscope examinations revealed the evidences of the reasons that 25 wt% SiC powder embedded abrasive bricks has the best qualifications in terms of abrasion resistance and polishing performance.
825

A Study On The Early-strength Improvement Of Slag Cements

Akgun, Erdinc 01 July 2009 (has links) (PDF)
Use of alternative raw materials, especially industrial by-products, is necessary for a sustainable cement industry. By replacing clinker with industrial by-products, consumption of natural resources and energy is decreased. Therefore, both economical and environmentally friendly cements are produced. Several industrial by-products such as fly ash, silica fume, and slag, one of the most widely used industrial by-products, can be used to produce standard blended cements. Besides its many advantages, slag cements are reported to have lower early compressive strengths. Therefore, the objective of this study is to investigate the early-strength improvement of slag cements. In the experimental study, in order not to change the cement type, the additives were incorporated within the minor additional constituent ranges, i.e. less than 5%. First, CEM III/A type control cement was prepared by blending clinker (K) and slag (S), which were separately ground in a laboratory type ball mill. Ground limestone (L) of varying fineness, silica fume (F), and sodium hydroxide (N) were prepared to be used as minor additional constituent. The ground clinker, slag, and gypsum, and the additives at various ratios were blended to obtain 15 CEM III/A type slag cements other than the control. Finally, the fresh and the hardened properties of the cements were determined. As a result of this experimental study, it was observed that addition of limestone generally increased the early compressive strength of slag cements. However, silica fume and sodium hydroxide either decreased or did not affect the early compressive strength of the slag cements.
826

A Study On Blended Bottom Ash Cements

Kaya, Ayse Idil 01 September 2010 (has links) (PDF)
Cement production which is one of the most energy intensive industries plays a significant role in emitting the greenhouse gases. Blended cement production by supplementary cementitious materials such as fly ash, ground granulated blast furnace slag and natural pozzolan is one of the smart approaches to decrease energy and ecology related concerns about the production. Fly ash has been used as a substance to produce blended cements for years, but bottom ash, its coarser counterpart, has not been utilized due to its lower pozzolanic properties. This thesis study aims to evaluate the laboratory performance of blended cements, which are produced both by fly ash and bottom ash. Fly ash and bottom ash obtained from Seyit&ouml / mer Power Plant were used to produce blended cements in 10, 20, 30 and 40% by mass as clinker replacement materials. One ordinary portland cement and eight blended cements were produced in the laboratory. Portland cement was ground 120 min to have a Blaine value of 3500&plusmn / 100 cm2/g. This duration was kept constant in the production of bottom ash cements. Fly ash cements were produced by blending of laboratory produced portland cement and fly ash. Then, 2, 7, 28 and 90 day compressive strengths, normal consistencies, soundness and time of settings of cements were determined. It was found that blended fly ash and bottom ash cements gave comparable strength results at 28 day curing age for 10% and 20% replacement. Properties of blended cements were observed to meet the requirements specified by Turkish and American standards.
827

Chemical Alteration Of Oil Well Cement With Basalt Additive During Carbon Storage Application

Mokhtari Jadid, Kahila 01 December 2011 (has links) (PDF)
Capturing and storing carbon dioxide (CO2) underground for thousands of years is one way to reduce atmospheric greenhouse gases, often associated with global warming. Leakage of CO2 through wells is one of the major concerns when storing CO2 in depleted oil and gas reservoirs. CO2-injection candidates could be new wells, or old wells that are active, closed or abandoned. To prevent the leakage, the possible leakage paths and the mechanisms triggering these paths must be examined and identified. It is known that the leakage paths can occur due to CO2-rock interaction and CO2-water-cement interaction. Interaction between well cement and carbon dioxide has attracted much renewed interest because of its implication in geological storage of carbon dioxide. The diffusion of CO2-water through well cement is a long-term phenomenon which can take many thousand years. Partial pressure, porosity, permeability, cement type, moisture content and temperature are the factors that affect the carbonation of well cement. The objective of this research is to investigate the chemical reactions of the dissolved CO2 in the synthetic formation water with the plugs of well cement. Cement specimens were left in contact with CO2 saturated brine at 1100 psi and 65
828

Effects Of Granulated Blast Furnace Slag Trass And Limestone Fineness On The Properties Of Blended Cements

Delibas, Tughan 01 January 2012 (has links) (PDF)
The aim of this research was to determine the effects of the fineness of different mineral additives on loss on ignition, heat of hydration, physical, mechanical and chemical properties of blended cements. For that purpose, portland cement clinker was replaced with granulated blast furnace slag (GBFS), natural pozzolan (NP) and limestone (L) at 6%, 20% and 35% replacement levels. Blended cements containing GBFS and NP were ground to a fineness of 3000, 5000 and 6000 cm2/g. Cements containing L were ground to 3000 cm2/g, 4000 cm2/g and 4500 cm2/g. All of the blended cement types mentioned above were both interground and separately ground to the specified fineness levels. Therefore, a total of 57 different cements were produced. Loss on ignition, heat of hydration, chemical, mechanical and physical analyses were performed on the produced cements. Moreover, the chemical analyses of the cements were obtained for cement particles finer (-45&mu / m) and coarser (+45&mu / m) than 45 &mu / m in order to determine the ingredients of -45 &mu / m, which is known to be more reactive. As a result it was shown that the grindability differences of the cement ingredients affect the properties of blended cements. An increase in the specific surface area increases both the compressive strength and heat of hydration values and adversely affects the loss on ignition values. The results also showed that if the cement particles were ground finer, it was more prone to moisture which resulted in higher loss on ignition values after longer periods.
829

Cement Penetrability Characteristics in Textile Cement Systems

Peled, Alva 03 June 2009 (has links) (PDF)
Cement penetrability is a key factor in multifilament cement composites. However, the modes of action and the concepts vary because of brittle and ductile fibers. In the case of brittle fibers such as glass, high penetrability of cement products in between the bundle filaments can lead to brittle composite behavior, and therefore addition in ductility is required. In order to have efficient bundle action and high bonding, fillers can be introduced in between the glass filaments, keeping the telescopic mode of failure but at the same time improving the bond and stress transfer within the filaments of the bundle, even at late ages, resulting in a ductile and high strength composite. On the other hand, ductile fibers such as polypropylene (PP), which also developing low bonding with the cement matrix, result in ductile cement composite but with relatively low strength. Therefore, in this case good penetrability of the cement in between the filaments of the bundle is essential in order to maximize the reinforcing efficiency of the bundle by improving bond. The penetrability of the matrix into a fabric structure and especially in between the bundle filaments made up the fabric is a result of fiber- matrix compatibility, which depends on: level of opening and spaces between the filaments, bundle surface properties including wetting and chemical affinity to the cement matrix, matrix viscosity, processing of the composite, and the nature of the fabric junctions and the resulting tightening effects of the bundle, i.e., influenced by the fabric structure itself.
830

Grenzflächenanalyse und -design an kontinuierlichen Multifilament- Glasrovings beschichtet mit reaktiven Zement-in-Polymer Dispersionen

Hojczyk, Markus, Weichold, Oliver, Möller, Martin 03 June 2009 (has links) (PDF)
Die polymere Komponente in reaktiven Zement-in-Polymer (c/p) Dispersionen hat einen entscheidenden Einfluss auf die Bildung der Mikrostruktur von c/p beschichteten Rovings in Beton. Elektronenmikroskopische Untersuchungen zeigen für den gut wasserlöslichen Poly(vinylalkohol) Ca(OH)2- Ablagerungen an der Grenzfläche, während für das hydrophobe Poly(vinylacetat) ein Gefüge aus teilhydratisiertem Klinker gefunden wird. Durch eine zeitliche Verfolgung der Wasseraufnahme mittels kernmagnetischer Resonanzspektroskopie konnte dies auf Unterschiede im Quellungsverhalten als Resultat der unterschiedlichen chemischen Struktur und Reaktivität gegenüber Alkalien zurückgeführt werden.

Page generated in 0.2718 seconds