• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 9
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 58
  • 58
  • 22
  • 16
  • 14
  • 13
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Dimensional instability of cement bonded particleboard : understanding its occurrence and reducing its magnitude

Fan, Mizi January 1997 (has links)
No description available.
12

Effect of Fiber Morphology on Tensile Properties of Polypropylene Cement Composites

January 2017 (has links)
abstract: The main objective of this study is to investigate the effect of polypropylene fiber morphology on the tensile response of cementitious composites. Two proprietary polypropylene fibers manufactured by BASF – MAC 2200CB, a crimped monofilament macro fiber and MF40, a bundled multi filament polypropylene made up of 500 filaments,40-micron diameter each were compared. The stiff structure and crimped geometry of MAC 2200 CB was studied in comparison with the multifilament MF40, which provide a higher surface area and a bundled fiber effect. Uniaxial tensile tests were performed on individual fibers to study fiber strength and failure pattern at three different gage lengths. The interaction of these 2 fibers with cement matrix was studied under varying strain rate, embedded fiber length and matrix mixes by a series of quassi - static fiber pullout tests. Unidirectional filament wound composite laminates were manufactures with the two fibers and only MF40 woven textiles were used to manufacture MF40 textile reinforced composites. The mechanical behavior of polypropylene fiber and textile reinforced cementitious composites subjected to static tensile loading with the effects of fiber type and dosage, textile weave and dosage, matrix formulations, processing techniques etc. is studied. Evolution of distributed cracking mechanism and local strain fields was documented using digital image correlation (DIC) and correlated with the tensile response and stiffness degradation. VIC 3D-7, commercial software developed by Correlated Solutions, Inc. was used to run the DIC analysis for the tensile tests on laminates. The DIC technique was further used for automated determination of crack density, crack spacing, and characterizing damage evolution. / Dissertation/Thesis / Masters Thesis Civil Engineering 2017
13

The behaviour of strain-hardening cement composites under biaxial compression

Molapo, Katiso Tokoloho 12 1900 (has links)
Thesis (MScEng (Civil Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: Reinforced concrete is susceptible to cracking. This makes it less durable than it would be had it been crack-free. Ingress of harmful substances into reinforced concrete through cracks – which causes corrosion of steel – is not desirable. This can be mitigated by the use of fibre reinforced-concretes or mortars showing strain hardening properties accompanied by improved ductility and multiple cracking under tensile loading. Such materials are called Strainhardening cementitious composites (SHCC’s). At Stellenbosch University, work has been done in previous years on SHCC to determine its behaviour under various loading conditions. Some of the aspects of the material that have been studied are the behaviour under uni-axial tensile loading, uni-axial compression and shear. The behaviour of SHCC under biaxial stresses was investigated to enable the prediction of the material behaviour under complex stress conditions. Square plate specimens of nominal dimensions 100 x 100 x 20 mm were cast and subjected to biaxial compressive loading at stress path angles of 00, 150, 300 and 450; which were equivalent to vertical/horizontal stress ratios of 0/1, 0.27/1, 0.58/1 and 1/1 respectively, at ages 23 to 33 days. Comparisons were made between specimens tested using steel platens and those tested using Vesconite sheets. Those tested using Vesconite yielded lower failure stresses. Vesconite was used to reduce the retraining effect of the frictional force between the specimens and the steel platens. Poisson’s ratios were calculated for specimens tested using steel and those tested using Vesconite. The values for Vesconite were found to be higher than for steel. Additionally, the values for the uni-axial case were different from those obtained for other stress ratios. This could have been due to the assumption made that plane stress was realised and that Elastic moduli in tension and in compression was the same. The possibility of the existence of a triaxial stress state could render the calculated Poisson’s ratios incorrect. Shear slip type failure accompanied by wedging was observed. Vertical to near diagonal cracks were evident on the front faces of the specimens for the stress path angles of 00 to 450 respectively. The observed crack patterns showed closely spaced multiple micro-cracking on the narrow edges of specimens indicating Strain-hardening behaviour. The stress-strain curves also showed a slight indication of strain-hardening where tensile strains were measured. / AFRIKAANSE OPSOMMING: Gewapende beton is vatbaar vir krake. Dit maak dit minder duursaam as wanneer dit kraak-vry is. Instroming van skadelike stowwe in gewapende beton deur middel van krake - wat korrosie van staal veroorsaak - is nie wenslik nie. Dit kan verbeter word deur die gebruik van veselversterkte beton of mortel wat vervormingsverharding eienskappe toon, vergesel deur verbeterde rekbaarheid en veelvuldige krake onder trekspanning. Sulke materiaal word Strainhardening cementitious composites (SHCC's) genoem. Die Universiteit Stellenbosch, het in vorige jare werk gedoen om SHCC se gedrag te bepaal onder verskillende belastingstoestande. Sommige van die aspekte van die materiaal wat bestudeer is, is gedrag onder uni-aksiale trek, uni-aksiale druk en skuif. Die gedrag van SHCC onder biaksiale spannings is ondersoek om voorspelling van materiaalgedrag onder komplekse spanningstoestande moontlik te maak. Vierkantige plaat monsters van nominale dimensies 100 x 100 x 20 mm is gemaak en aan biaksiale drukkragte onderwerp, met spannningspad hoeke van 00, 150, 300 en 450; wat soortgelyk is aan die horisontale spanning verhoudings van 0/1, 0.27/1, 0.58/1 en 1/1 onderskeidelik, op ouderdomme 23-33 dae. Vergelykings is getref tussen monsters getoets met staal plate en diegene getoets word met Vesconite plate. Die proefstukke getoets met Vesconite het laer falingsspannings opgelewer. Vesconite is gebruik om die uitwerking van die wrywingskrag tussen die monsters en die staal plate te verminder. Poisson se verhouding is bereken vir die staal en Vesconite monsters afsonderlik. Daar is gevind dat die Vesconite waarde hoër was as die vir staal. Daarbenewens het die waardes vir die uni-aksiale geval, verskil van dié vir ander spanningsverhoudings. Dit kan wees as gevolg van die aanname van vlakspanning en dat die Elastiese moduli in druk en in trek dieselfde is. Die moontlikheid van die bestaan van 'n drie-dimensionele spanningstoestand, kan beteken dat die berekende Poisson’s verhoudings onakkuraat is. Skuif-glip tipe faling, vergesel deur vaswigting is waargeneem. Vertikale tot feitlik diagonale krake is duidelik sigbaar op die voorkant van die monsters vir spanningspadhoeke van 0-450 onderskeidelik. Die waargeneemde kraak patrone het nou gespasieerde, veelvuldige mikro-krake op die smal randte van die monsters, wat dui op vervormingsverharding. Die spanningsvervormings kurwes het ook effense aanduidings getoon van die vervormingsverharding waar trekvervorming gemeet is.
14

Performance of wood frame wall with thin shell ECC shear panel /

Lewis, Michael C. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2009. / Printout. Includes bibliographical references (leaves 62-64). Also available on the World Wide Web.
15

Rheological aspects and thermal behaviors of extruded panels /

Li, Xiangyu. January 2009 (has links)
Thesis (Ph.D.)--Hong Kong University of Science and Technology, 2009. / Includes bibliographical references (p. 261-275).
16

Development of novel composite cement systems for the encapsulation of aluminium from nuclear wastes

McCague, Colum January 2015 (has links)
Currently in the UK, composite blends of Portland cement (PC) and blastfurnace slag (up to 90%) are commonly used for the encapsulation of low and intermediate level wastes. The high volume replacement of PC is considered necessary in order to to reduce the high heat generation resulting from cement hydration in 500 litre waste packages. While suited to the majority of waste streams, the high pH environment in such systems (usually around 12.5 -13), will cause the corrosion of certain waste metals such as aluminium. Since aluminium is only passive between pH4 - 8.5, the use of an alternative low-pH cement system could serve to reduce/inhibit the corrosion. However, before such cements can be considered, two main research problems must be addressed, as follows: (1) quantitative evaluation of alternative cement systems based on their corrosion performance with aluminium; (2) high heat generation due to the rapid rate of hydration. The research in this thesis was thus divided into two strands, as follows: (1) The design and development of a novel, scientifically robust testing facility for the quantitative monitoring of aluminium corrosion in cement pastes; (2) the development of novel cement composites based on weakly alkaline calcium sulfoaluminate (CSA) cement for the encapsulation of aluminium from nuclear wastes. The output from this research is considered to be of interest to the UK nuclear industry.
17

Strength and toughness of HDPE fiber reinforced aggregate concrete as a sustainable construction material

Unknown Date (has links)
An experimental study was conducted on the strength and toughness characteristics of concrete made from recycled aggregate, cement and fly ash reinforced with reclaimed high density polyethylene plastic (HDPE) fibers. The objectives of the investigation were: (1) to evaluate the performance of a sustainable concrete containing up to 90% recycled materials; (2) to determine the variation of strength and toughness with a Fiber Factor incorporating length, width and amount of HDPE fibers; (3) to identify the best performing mix design based on tensile strength and toughness and (4) to provide some guidelines for the use of this sustainable composite in Civil Engineering construction. The results showed that the HDPE fiber reinforcements did not improve the compressive strength of the mixture. However, HDPE fibers improved the ductility and toughness which may be beneficial for structural and pavement applications. / by Roody Numa. / Thesis (M.S.C.S.)--Florida Atlantic University, 2011. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2011. Mode of access: World Wide Web.
18

Characterization of structural rebuilding and shear migration in cementitious materials in consideration of thixotropy

Qian, Ye January 2017 (has links)
From initial contact with water until hardening, and deterioration, cement and concrete materials are subjected to various chemical and physical transformations and environmental impacts. This thesis focuses on the properties during the fresh state, shortly after mixing until the induction period. During this period flow history, including shearing and resting, and hydration both play big roles in determining the rheological properties. The rheological properties of cement and concrete not only affect the casting and pumping process, but also very critical for harden properties and durability properties. Compared with conventional concrete, self-consolidating concrete (SCC) can introduce many advantages in construction application. These include readiness to apply, decreasing labor necessary for casting, and enhancing hardened properties. However, challenges still remain, such as issues relating to formwork pressure [1-7] and multi-layer casting [8]. Each of these issues is closely related to the property of thixotropy. From the microstructural point of view, thixotropy is described as structural buildup (flocculation) under rest and breakdown (deflocculation) under flow. For SCC, as well as other concrete systems, it is about balancing sufficient flowability during casting and rate of structural buildup after placement for the application at hand. For instance, relating to the issue of SCC formwork, it is ideal for the material to be highly flowable to achieve rapid casting, but then exhibit high rate of structural buildup to reduce formwork pressure. This can reduce the cost of formwork and reduce the risk of formwork failure. It is apparent that accurately quantifying the two aspects of thixotropy, i.e. structuration and destructuration, is key to tackling these challenges in field application. Thus, the overall objective of my doctoral study is to improve quantification of key parameters tied to thixotropy that we have identified to be important: static yield stress, cohesion and degree of shear-induced particle migration. The two main contributions are as follows: Firstly, I quantified structuration of fresh paste and mortar systems by measuring static yield stress. After an extensive review of various rheological methods to probe viscoelastic properties of yield stress fluids, I selected, developed, and implemented a creep recovery protocol. Creep results were supplemented by low-amplitude oscillatory shear results, and supported that the measured static yield stress corresponds to the solid-liquid transition. This improved quantification of static yield stress can help better understand the effect of mix composition on SCC formwork pressure development, as well as static segregation and stability [9]. Since the static yield stress is measured before the structure is broken down, the effects of sand migration are eliminated. This study also analyzed effects of other supplementary cementitous materials such as nanoclay and fly ash. Results showed that nanoclay effectively increases static yield stress and structuration rate, while fly ash decreases static yield stress. To complement this investigation, I studied cohesion using the probe tack test, as cohesion is widely cited to be closely related to formwork pressure. I verified that probe tack test is a quick and useful method to measure static cohesion. Results showed that nanoclay increased cohesion dramatically while fly ash did not have an apparent effect on cohesion. Secondly, I developed an empirical model to fit the stress decay process under constant shear rate, For mortar systems, the stress decay can be attributed to two mechanisms: colloidal destructuration and sand migration. Such a model could be used to characterize particle migration and dynamic segregation [10], a critical issue for casting applications. In addition, shear induced particle migration is a widely recognized challenge in characterizing mortars and concretes through shear rheological methods [11-13]. Therefore this model can help determine the range of shear rates within which migration can be minimized to guide the design of protocols for dynamic rheological characterization and to ultimately develop design strategies to minimize mitigation. Compared with currently existing methods, this model provides a faster approach to quantify the sand migration process, including kinetics.
19

Fundamental physical properties of graphene reinforced concrete

Dimov, Dimitar January 2018 (has links)
The global warming has increased with unprecedented levels during the last couple of decades and the trend is uprising. The construction industry is responsible for nearly 10% of all carbon emissions, mainly due to the increasing global population and the large demand for housing and civil infrastructure. Concrete, which is the most used construction material worldwide, is found in every type of building as it provides long term structural stability, support and its main constituent cement, is very cheap. Consequently, due to the raising concerns of high average temperatures, the research community started investigating new, innovative methods for substituting cement with 'greener' materials whilst at the same time improving the intrinsic properties of concrete. However, the manufacturing complications and logistics of these materials make them unfavourable for industrial applications. A novel and truly revolutionary method of enhancing the performance of concrete, thus allowing for decreased consumption of raw materials, lies in nanoengineering the cement crystals responsible for the development of all mechanical properties of concrete. Graphene, a two-dimensional sheet of carbon atoms arranged in a hexagonal lattice, is the most promising nanomaterial for composites' reinforcement to this date, due to it's exceptional strength, ability to retain original shape after strain, water impermeability properties and non-hazardous large scale manufacturing techniques. I chose to investigate the addition of liquid-phase exfoliated graphene suspensions for concrete reinforcement, aiming to improve the fundamental mechanical properties of the construction material and therefore allowing the industry to design buildings using less volume of base materials. First, the method of liquid exfoliation of graphene was developed and the resulting water suspensions were fully characterised by Raman spectroscopy. Then, concrete samples were prepared according to British standards for construction and tested for various properties such as compressive and flexural strength, cyclic loading, water impermeability and heat transport. A separate, in-depth, study was carried out to understand the formation and propagation of micro-structural cracks between the concrete's internal matrix planes, and graphene's impact on total fracture capacity and resistance of concrete. Lastly, multiple experiments were performed to investigate the microcrystallinity of cement hydration products using X-Ray diffraction. In general, all experimental results show a consistent improvement in concrete's performance when enhanced with graphene on the nanoscale level. The nanomaterial improves the mechanical interlocking of cement crystal, thus strengthening the internal bonds of the composite matrix. This cheap and highly scalable method for producing and mixing graphene with concrete turns it into the first truly applicable method for industrial applications, with a real potential to have positive impact on the global warming by decreasing the production of concrete.
20

Advances in Natural Fiber Cement Composites: A Material for the Sustainable Construction Industry

Silva, Flávio de Andrade, Mobasher, Barzin, Filho, Romildo Dias de Toledo 03 June 2009 (has links) (PDF)
The need for economical, sustainable, safe, and secure shelter is an inherent global problem and numerous challenges remain in order to produce environmentally friendly construction products which are structurally safe and durable. The use of sisal, a natural fiber with enhanced mechanical performance, as reinforcement in a cement based matrix has shown to be a promising opportunity. This work addresses the development and advances of strain hardening cement composites using sisal fiber as reinforcement. Sisal fibers were used as a fabric to reinforce a multi-layer cementitious composite with a low content of Portland cement. Monotonic direct tensile tests were performed in the composites. The crack spacing during tension was measured by image analysis and correlated to strain. Local and global deformation was addressed. To demonstrate the high performance of the developed composite in long term applications, its resistance to tensile fatigue cycles was investigated. The composites were subjected to tensile fatigue load with maximum stresses ranging from 4 to 9.6 MPa at a frequency of 2 Hz. The composites did not fatigue below a maximum fatigue level of 6 MPa up to 106 cycles. Monotonic tensile testing was performed for composites that survived 106 cycles to determine its residual strength.

Page generated in 0.1651 seconds