Spelling suggestions: "subject:"[een] COMPUTATIONAL CHEMISTRY"" "subject:"[enn] COMPUTATIONAL CHEMISTRY""
61 |
Computational Quantum Chemistry Studies of the Stabilities of Radical Adducts Formed During the Oxidation of Melatonin DerivativesHorne, James 01 December 2023 (has links) (PDF)
Melatonin is a natural antioxidant that has been investigated for properties as a potential spin trap to identify short-lived free radicals. Computational quantum chemistry studies have been performed for the oxidation of melatonin to N1-acetyl-N2-formyl-5-methoxykynuramine. This research focused on modification of melatonin into derivatives and analyzing the change in total molecular energy from melatonin to its oxidation product, as well as the corresponding derivatives. Each of the molecular geometries were optimized at the DFT/B3LYP/6-31G(d), DFT/B3LYP/cc-pVXZ (X = D, T), HF/6-31G(d), HF/cc-PVXZ (X = D, T), MP2/6-31G(d), and MP2/cc-PVXZ (X = D, T) levels of theory. Single point energies were extrapolated to the complete basis set. The results demonstrated that some electron-withdrawing groups increased the total energy of the system. The electron-withdrawing functional group which lowered the total energy of the system was a peroxyl functional group, and this is believed to be due to overlapping constructive interference between molecular orbitals.
|
62 |
Examining the Gas-Phase Fragmentation of Select Metal ß-diketonate Complexes Using Computational MethodsKemats, Kyle 19 September 2014 (has links)
No description available.
|
63 |
Design, Synthesis, and Photophysical Properties of Corannulene-based Organic MoleculesJones, Derek R. January 2011 (has links)
No description available.
|
64 |
Computational Chemistry and Molecular Modeling of Polyphosphazenes for Biomedical ApplicationsKroger, Jessica 05 October 2012 (has links)
No description available.
|
65 |
Characterization of Novel Aldose Reductase Inhibitors and Their Binding Modes Using Spectroscopic and Computational MethodsMiller, Chad J. 24 October 2010 (has links)
No description available.
|
66 |
Computational Modeling of SCMTR: A Synthetic Anion ChannelBurkhardt, Jonathan B. 12 September 2013 (has links)
No description available.
|
67 |
The Synthesis of Oxazolidinones from Aziridines and Carbon DioxidePhung, Chau V. 09 September 2016 (has links)
No description available.
|
68 |
Computational studies of gas-phase radical reactions with volatile organic compounds of relevance to combustion and atmospheric chemistryMerle, John Kenneth 10 October 2005 (has links)
No description available.
|
69 |
Computational and Experimental Studies of Excited States of Different Precursors of Carbenes and NitrenesLuk, Hoi Ling 16 August 2012 (has links)
No description available.
|
70 |
Explorations of the N-C Atropisomerism of Indigo Diimines and Related ComplexesRichard, Nicholas 27 September 2022 (has links)
This study focused on the preparation and characterization of new indigo diimine (Nindigo) derivatives as a new atropisomeric scaffold. Trans- and cis- indigo diimines were studied and structure-property relationships were investigated regarding N-C atropisomerism using variable temperature 1H NMR studies and density functional theory calculations.
Neutral trans- and protonated cis-Nindigos were prepared featuring a variety of mono ortho-substituted aryl imine groups with varying levels of steric bulk. The neutral trans-Nindigo derivatives generally have smaller N-C rotational energy barriers than their protonated cis-congeners. This finding is consistent with the latter having closer proximity of the N-aryl groups to each other, leading to steric repulsions between the two groups. The N-C rotational energy barriers are substituent dependent; the N-C rotational energy barriers of mono ortho substituted trans-Nindigos were in the range of 6.0 – 16.4 kcal/mol and can be classified as predominantly “Class 1’ atropisomers as defined by LaPlante, while the mono ortho substituted protonated cis-Nindigo analogs have N-C rotational barriers between 12.3 – 25.5 kcal/mol and are classified as “Class 1” and “Class 2” atropisomers. The introduction of additional substituents onto the other ortho position of the aryl imine subunit has significant consequences for the N-C rotational energy barriers of both the neutral trans- and protonated cis-Nindigos making them stable, or close to being, ‘Class 3’ atropisomers, having N-C rotational energy barriers between 31.5 – 276.9 kcal/mol and 29.3 – 32.6 kcal/mol respectively.
Recognizing that the protonation state induced trans- to cis-isomerization process could have significant consequences regarding the potential applicability of these atropisomeric Nindigo derivatives, cis-Nindigo derivatives were synthesized that contained a tether (oxalyl or palladium (II) acetylacetonate) between the two indole type nitrogens of the Nindigo, which prevent the central -C=C- from isomerizing. The N-C rotational barriers of the tethered cis-Nindigos also displayed substituent dependent N-C rotational energy barriers. The protonation state of the N, N’-oxalyl bridged cis-Nindigos has a significant impact (higher in energy by a minimum of 5.1 kcal/mol) on the N-C rotational barriers; the neutral N, N’-oxalyl bridged cis-Nindigos have N-C rotational energy barriers ranging between 11.8 – 14.9 kcal/mol, classifying them as “Class 1” atropisomers, while their protonated congeners have N-C rotational energy barriers between 16.9 – 19.8 kcal/mol, which classifies them as “Class 1” atropisomers but are on the cusp of being “Class 2” atropisomers. The size of the tether influences the N-C rotational energy barriers of cis-Nindigos; the one-atom bridged palladium (II) acetylacetonate complexes have generally lower N-C rotational energy barriers than their protonated N, N’-oxalyl bridged cis-Nindigo congeners. The palladium acetylacetonate tethered cis-Nindigo complexes displayed substituent N-C rotational energy barrier dependence and the mono ortho substituted analogs have N-C rotational energy barriers between 12.4 – 20.2 kcal/mol and are predominantly “Class 1” atropisomers, while the bulkier analogs are “Class 2” atropisomers. The palladium (II) acetylacetonate cis-Nindigo complexes that have aryl imine groups with a 2,6-disubstitution pattern have N-C rotational energy barriers greater than 19.7 and 20.2 kcal/mol and are presumed to be stable “Class 3” atropisomers like their unbridged neutral trans- and protonated cis-Nindigo counterparts. / Graduate / 2023-09-12
|
Page generated in 0.041 seconds