• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 13
  • 1
  • Tagged with
  • 35
  • 35
  • 14
  • 14
  • 10
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Photoredox catalysis as a versatile tool towards the double functionalisation of activated double bonds

Fumagalli, Gabriele January 2015 (has links)
In the last decade photoredox catalysis has emerged as an important new tool for organic chemists. The especially mild conditions and the broad range of reactions accessible using this methodology had a beneficial effect on the exploitation of radical reactions on otherwise labile substrates. Herein we report our work in this fast developing area and our efforts into the double functionalisation of styrenoid double bonds. We disclosed a new methodology for the room temperature photoredox catalysed alkoxy- and amino-arylation of styrenes using diaryl iodonium tetrafluoroborates and diazonium salts as aryl radical precursors. This methodology allows the successful regioselective coupling of three disparate components together and can be expanded to a wide range of alcohol nucleophiles, nitriles and water in moderate to good yields. The mild conditions employed permit the effective reaction of electron-rich styrenes and the tolerance of halogen functionalities, thus opening the possibility to further molecular elaboration. We then moved to explore the possibility of oxymethylnitrilation of styrenes and of the sysnthesis of heterocyclic cores via internal trapping with a nucleophile. Pleasingly, we were able to develop a mild and general methodology for the methylnitrilation of styrenes using simple and cheap bromoacetonitrile and photoredox catalysis. Furthermore, the synthesis of tetrahydrofuran and dihydrofuran cores was achieved in a single step, allowing us to synthesise tricyclic cores, maintaining functionisable handles such as halogens and ester groups. Finally, we decided to explore the possibility to add an azide functionality. After extensive optimisation, we were pleased to discover reaction conditions allowing for a switchable reactivity: under light irradiation we could perform an azidation reaction followed by addition of a nucleophile of choice; excluding the light from the reaction conditions, we could perform a double azidation reaction. The mild reaction conditions ensured the previously observed tolerance of functional groups; furthermore, we used a more sustainable copper-based photoredox catalyst.
2

Radical Adventures in Photochemistry

McCallum, Terry 06 July 2018 (has links)
A field in bloom: photoredox catalysis has allowed chemists access to highly reactive intermediates via the photo-mediated excitation of transition metal complexes and organic dyes for the mild generation of free radicals. These complexes and dyes are designed based on Nature’s blueprints of light-harvesting biomolecules that transform solar energy (photons) into chemical energy during photosynthesis. Light-mediated chemical activation is regarded as one of the most sustainable forms of chemical activation being that the energy provided by the sun is considered renewable and largely underutilized and presents an attractive avenue for research and development of new transformations that are mild, efficient, and waste-limiting in organic synthesis. Radical chemistry and photochemistry are united in their inherent ability to undergo single (or photoinduced) electron transfers by one-electron reaction modes. Combining these unique fields, photoredox catalysis has emerged as a mild and efficient alternative to classic alkyl radical generation using hazardous initiators and organostannanes. Photoredox catalysis has been dominated by ruthenium- and iridium-based polypyridyl complexes. These complexes are limited by their inherent redox potentials, restricting their reactivity towards relatively activated bonds. Nonactivated bromoalkanes and arenes are considered challenging substrates to engage using redox chemistry and typically only accessible in the realm of organostannane chemistry. Described herein are the efforts towards the discovery of free radical based organic transformations derived from nonactivated bromoalkanes and arenes mediated by photochemical excitation of polynuclear gold(I) complexes as photoredox catalysts. This work represents some of the first uses of a photoredox catalyst in the reduction of substrates having such high reduction potentials and offers a practical and useful alternative to classic radical reactions mediated by initiators (peroxides, persulfates, and azo compounds) and toxic organostannanes (Bu3SnH). Using gold based photoredox catalysts, the research conducted has provided many methodological advancements for the mild and efficient formation of carbon-carbon bonds using nonactivated bromoalkanes and a large collection of radical acceptors. Establishing the use of these photoexcited polynuclear gold(I) complexes in the context of classic radical reactions in organic synthesis was important for their validation as useful photocatalysts. First, the Ueno-Stork cyclization of nonactivated bromoalkanes was used to demonstrate the powerful reducing capabilities of the excited-state gold(I) complexes. Next, a photo-mediated variant of the Appel reaction was described, where the transformation of an alcohol to a bromoalkane was achieved using carbontetrabromide and N,N-dimethylformamide through the intermediacy of a Vilsmeier-Haack reagent. In combination with the hydrodebromination chemistry developed with photoexcited polynuclear gold(I) complexes, a photo-mediated one-pot formal deoxygenation reaction of alcohols was described; a useful alternative to the organostannane mediated Barton-McCombie deoxygenation reaction. Finally, in the field of medicinal chemistry, the functionalization of heteroarenes is of high interest for the discovery of drug candidates and bioactive molecules. In this respect, one of the most useful reactions for the functionalization of heteroarenes by alkyl radicals is the Minisci reaction using silver salts, carboxylic acids, and persulfates. Detailed are the efforts for the development of a photo-mediated redox-neutral improvement of the Minisci reaction, needing only gold(I) photocatalyst and nonactivated bromoalkane in the presence of heteroarenes. Overall, the work described in this thesis represents the push for mild and efficient alternatives to the relatively harsh conditions and/or toxic reagents and byproducts associated with classic radical chemistry. These studies demonstrate the ability to control highly reactive alkyl radical intermediates with the goal of their broader application in synthetic organic chemistry. The use of photoexcited polynuclear gold(I) complexes as potent reductants compared to ruthenium- and iridium-based polypyridyl complexes is illustrated through the genesis of highly reactive alkyl radicals from nonactivated bromoalkanes.
3

Photoredox catalyzed β C-H cyanation of alcohols via a radical chaperone and studies toward the electrochemical reduction of allyl oxime imidates

Hayward, Shania January 2021 (has links)
No description available.
4

Investigating the Interactions between Free Radicals and Supported Noble Metal Nanoparticles in Oxidation Reactions

Crites, Charles-Oneil January 2015 (has links)
This thesis studies the interaction between free radical species and supported noble metal nanoparticles (silver and gold) in the context of oxidation reactions. The peroxidation of cumene is the first reaction to be discussed and the difference in peroxidation product distribution using silver nanoparticles (AgNP) versus gold nanoparticles (AuNP) is examined. Specifically, cumyl alcohol is obtained as the major product obtained when using supported AuNP, whereas cumene hydroperoxide is favoured for AgNP. Such variations in product distribution are partially explained by the differences in the nanoparticle Fenton activity, where the TiO2 support was proposed to enhance such activity due to possible electron shuttling capabilities with the nanoparticle surface. Use of hydrotalcite as a support was found to minimize this characteristic, due to its insulator properties. The stability of hydroperoxide was tested in the presence of various others supports (activated carbon, Al2O3, ZnO, SiO2 and clays) with little success, with hydroperoxide exhibiting stability in the presence of HT. Using an oxygen uptake apparatus, the interaction of the cumyl peroxyl radical with the AuNP surface was demonstrated. Furthermore, this interaction promotes decomposition leading to the corresponding alkoxyl radical and subsequent hydrogen abstraction to form the observed cumyl alcohol product. The radical interaction with supported nanoparticles, and its reversibility appear different for gold and silver and accounts for a large part of the product distribution differences observed between AuNP and AgNP, as illustrated below. The peroxidation of ethylbenzene and propylbenzene was studied and revealed the participation of a reactive surface oxygen species due to the decomposition of peroxyl radicals on the nanoparticle surface. The reactive oxygen species was found to be transient in nature in the case of AuNP . Furthermore, this surface species was found to be an important participant in hydrogen abstraction leading to peroxide product formation. Finally, supported nanoparticle catalyzed tetralin peroxidation was investigated to determine the influence of temperature on the peroxidation product distribution and how changes in the reaction temperature can effect the radical-nanoparticle surface interactions.
5

Enantioselective Radical Strategy for the Stereoselective Synthesis of Three-Membered Heterocycles via Co(II)-Based Metalloradical Catalysis:

Riart-Ferrer, Xavier January 2021 (has links)
Thesis advisor: X. Peter Zhang / Highly strained three membered heterocycles are a common motif in many biologically relevant molecules and represent a versatile building block for organic synthesis. Of special interest for asymmetric synthesis is the construction of enantioenriched aziridines and epoxides, which are often used as chiral synthons to introduce heteroatoms in a stereoselective fashion. Among different elegant strategies, the direct aziridination and epoxidation of the ubiquitous alkene functionality represents one of the most powerful methods to access these motifs. Given the synthetic importance of the enantioenriched smallest aza- and oxaheterocycles, the focus of this dissertation is centered on the design and use of chiral cobalt porphyrins as catalysts to develop new methodologies for the asymmetric radical aziridination and epoxidation of alkenes.In the first part of this dissertation, we focused on using carbonyl azides as nitrogen source for the enantioselective radical aziridination of alkenes. Despite its high functionality and versatility for further derivatization, carbonyl azides have never been reported as nitrogen source for intermolecular asymmetric alkene aziridination. In the second part of this dissertation, we focused on opening up a new area of research, which involves the generation and characterization of the unprecedented cobalt porphyrin-supported oxygen-centered radical species. Finally, we demonstrated the synthetic utility of these new radical species by developing a new system for the asymmetric epoxidation of alkenes through the design and development of a novel family of catalyst named “JesuPhyrin”. / Thesis (PhD) — Boston College, 2021. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
6

Computational studies of gas-phase radical reactions with volatile organic compounds of relevance to combustion and atmospheric chemistry

Merle, John Kenneth 10 October 2005 (has links)
No description available.
7

Stereoselective Radical Transformations by Co(II)-Based Metalloradical Catalysis:

Wang, Xiaoxu January 2022 (has links)
Thesis advisor: X. Peter Zhang / Chapter 1. Co(II)-Based Metalloradical Catalysis for Stereoselective Radical Cyclopropanation of Alkenes This Account summarizes our group’s recent efforts in developing metalloradical catalysis as a one-electron approach for catalytic radical cyclopropanation of alkenes with diazo compounds. Chapter 2. Asymmetric Radical Process for General Synthesis of Chiral Heteroaryl Cyclopropanes We have developed a Co(II)-based metalloradical system that is highly effective for asymmetric radical cyclopropanation of alkenes with in situ-generated heteroaryldiazomethanes. Through fine-tuning the cavity-like environments of newly developed D2-symmetric chiral amidoporphyrins as the supporting ligand, the optimized Co(II)-based metalloradical system is broadly applicable to pyridyl and other heteroaryldiazomethanes for asymmetric cyclopropanation of a wide range of alkenes, providing general access to valuable chiral heteroaryl cyclopropanes in high yields with excellent diastereoselectivities and enantioselectivities. Chapter 3. Enantioselective Metalloradical 1,6-C–H Alkylation of In Situ-Generated Alkyldiazomethanes for Synthesis of Chiral Piperidines We have disclosed an effective Co(II)-based metalloradical system as a fundamentally different approach to harness the potential of 1,6-HAA radical process, enabling asymmetric 1,6-C–H alkylation of in situ-generated alkyldiazomethanes to construct chiral piperidines. Supported by an optimal D2-symmetric chiral amidoporphyrin ligand, the Co(II)-catalyzed alkylation system is capable of activating a wide array of alkyldiazomethanes containing C(sp3)–H bonds with varied steric and electronic properties, providing access to chiral piperidines in good to high yields with high enantioselectivities from readily accessible 4-aminobutanal derivatives. In addition to practical attributes, such as operational simplicity and mild conditions, the metalloradical system is highlighted by its tolerance to different functional groups as well as compatibility with heteroaryl units. Chapter 4. Design and Synthesis of A Novel D2-Symmetric Chiral Porphyrin for Co(II)-Based Metalloradical Catalysis A novel D2-symmetric chiral amidoporphyrin derived from chiral cyclopropanecarboxamide containing diphenyl units has been effectively constructed based on Co(II)-catalyzed asymmetric cyclopropanation of alkenes. / Thesis (PhD) — Boston College, 2022. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
8

Des réactions multicomposants impliquant des isonitriles a la synthèse d'heterocycles

Patil, Pravin 01 October 2012 (has links) (PDF)
Ces travaux mettent en valeur les réactions multicomposants a base d'isonitriles dans différentes applications autour des réactions d'Ugi-Smiles et de Nef pour la synthèse de systèmes hétérocycliques complexes. Nous avons démontré la possibilité d'utiliser des 4-hydroxypyridine et pyrimidines dans des couplages Ugi-Smiles. Ces réactions ont été appliquées à la préparation d'analogues d'antipaludéens. Diverses applications radicalaires ont été explorées sur des adduits de Ugi et Ugi-Smiles ( chimie des xanthates, couplages oxydatifs d'indoles). Nous avons par ailleurs exploré la chimie des dihalogénoisonitriles dans différentes synthèses hétérocycliques.
9

Synthèse et étude physico-chimique de nouvelles alcoxyamines activables pour la lutte contre le paludisme / Study and synthesis of activatable alcoxyamines to fight malaria

Nkolo, Paulin 27 September 2017 (has links)
Ce travail présente une nouvelle application des alcoxyamines en chimie thérapeutique et notamment pour lutter contre le parasite plasmodium falciparum, responsable du paludisme.Cette idée repose sur l'utilisation de la chimie radicalaire. A ce jour un traitement de choix met en œuvre l'artémisinine. Le mode d'action est la destruction du parasite par la formation de radicaux libres. L'artémisinine est activée par le Fe(II) de l'hème libéré lors de la digestion de hémoglobine par le parasite. L'activation conduit à la production de radicaux alkyles qui déclenchent l'apparition d'un stress oxydatif entrainant la mort du parasite.Dans ce travail, nous avons synthétisé des alcoxyamines inédites possédant des structures chimiques particulières. Ces alcoxyamines sont activables par protonation ou par complexation par des ions métalliques tels que le Fe(II) afin de produire de façon rapide et ciblée des radicaux capable d'induire un stress oxydatif. Des études cinétiques des molécules préparées dans ce manuscrit ont aussi été effectuées. Celles-ci ont montré une réduction drastique des énergies d'activation et des temps de demi-vie des alcoxyamines activées permettant de produire des radicaux rapidement et de manière sélective. Ce travail a permis d'obtenir des alcoxyamines modèles pour valider le concept d'alcoxyamines anti-paludéens. / This work presents a new application of alkoxyamines in therapeutics chemistry, in order to fight the parasite plasmodium falciparum, a parasite responsible for malaria.This idea is based on a mechanism similar to that of artemisinin, a standard drug used for malaria. Artemisinin is activated by iron(II) of heme, released during hemoglobin digestion by the parasite. Activation leads to the formation of radicals which trigger oxidative stress leading to the death of the parasite.In this work, we have synthesized new alkoxyamines with particular chemical structures. These alkoxyamines, upon protonation or metal-complexation, produce radicals able to afford oxydative stress. Moreover kinetic studies showed a drastic reduction of the activation energies and half-lives of activated alkoxyamines in oder to produce quickly radicals, which makes it possible to obtain model alkoxyamines with anti-malarial activities.
10

Aqueous Phase Reaction Kinetics of Organic Sulfur Compounds of Atmospheric Interest

Zhu, Lei 23 November 2004 (has links)
Dimethyl Sulfide (CH3SCH3, DMS) is the most important natural sulfur compound emitted from the ocean and its oxidation in the atmosphere has been proposed to play an important role in climate modification because some products from DMS oxidation become non-volatile and could participate in particle formation and growth processes. Although it has been demonstrated that aqueous phase reactions are potentially important for understanding DMS oxidation, the kinetics database for aqueous phase transformations is rather limited. In this work, a laser flash photolysis (LFP) ??ng path UV-visible absorption (LPA) technique was employed to investigate the kinetics of the aqueous phase reactions of four organic sulfur compounds produced from DMS oxidation, i.e., dimethylsulfoxide (DMSO), dimethyl-sulfone (DMSO2), methanesulfinate (MSI) and methanesulfonate (MS), with four important aqueous phase radicals, OH, SO4 and #8722;, Cl and Cl2 and #8722;. The temperature-dependent kinetics of the OH and SO4 and #8722; reactions with DMSO, DMSO2 and MS were studied for the first time. OH is found to be the most reactive, while Cl2 and #8722; is the least reactive toward all the sulfur species studied. The less oxidized DMSO and MSI are found to be more reactive than the more oxidized DMSO2 and MS for each radical. The kinetic data have been employed in a Trajectory Ensemble Model to simulate DMS oxidation in the marine atmosphere as a means of assessing the contribution of aqueous phase reactions to the growth of particulate matter. For the first time, oxidation of organic sulfur compounds by SO4 and #8722;, Cl and Cl2 and #8722; are included in the model to simulate DMS chemistry. Our simulations suggest that aqueous phase reactions contribute >97% of MS and ~90% of NSS (Non-Seasalt Sulfate) production, and aqueous phase reactions of the organic sulfur compounds contribute 30% of total particle mass growth. When our kinetic data for the MS + OH reaction were used in the model, it was found that MS + OH could consume ~20% of MS and produce ~8% of NSS, within 3 days under typical marine atmospheric conditions.

Page generated in 0.0836 seconds