• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The reactions of diazo compounds with nucleophiles

Khodaei, M. M. January 1988 (has links)
No description available.
2

Stereoselective Radical Transformations by Co(II)-Based Metalloradical Catalysis:

Wang, Xiaoxu January 2022 (has links)
Thesis advisor: X. Peter Zhang / Chapter 1. Co(II)-Based Metalloradical Catalysis for Stereoselective Radical Cyclopropanation of Alkenes This Account summarizes our group’s recent efforts in developing metalloradical catalysis as a one-electron approach for catalytic radical cyclopropanation of alkenes with diazo compounds. Chapter 2. Asymmetric Radical Process for General Synthesis of Chiral Heteroaryl Cyclopropanes We have developed a Co(II)-based metalloradical system that is highly effective for asymmetric radical cyclopropanation of alkenes with in situ-generated heteroaryldiazomethanes. Through fine-tuning the cavity-like environments of newly developed D2-symmetric chiral amidoporphyrins as the supporting ligand, the optimized Co(II)-based metalloradical system is broadly applicable to pyridyl and other heteroaryldiazomethanes for asymmetric cyclopropanation of a wide range of alkenes, providing general access to valuable chiral heteroaryl cyclopropanes in high yields with excellent diastereoselectivities and enantioselectivities. Chapter 3. Enantioselective Metalloradical 1,6-C–H Alkylation of In Situ-Generated Alkyldiazomethanes for Synthesis of Chiral Piperidines We have disclosed an effective Co(II)-based metalloradical system as a fundamentally different approach to harness the potential of 1,6-HAA radical process, enabling asymmetric 1,6-C–H alkylation of in situ-generated alkyldiazomethanes to construct chiral piperidines. Supported by an optimal D2-symmetric chiral amidoporphyrin ligand, the Co(II)-catalyzed alkylation system is capable of activating a wide array of alkyldiazomethanes containing C(sp3)–H bonds with varied steric and electronic properties, providing access to chiral piperidines in good to high yields with high enantioselectivities from readily accessible 4-aminobutanal derivatives. In addition to practical attributes, such as operational simplicity and mild conditions, the metalloradical system is highlighted by its tolerance to different functional groups as well as compatibility with heteroaryl units. Chapter 4. Design and Synthesis of A Novel D2-Symmetric Chiral Porphyrin for Co(II)-Based Metalloradical Catalysis A novel D2-symmetric chiral amidoporphyrin derived from chiral cyclopropanecarboxamide containing diphenyl units has been effectively constructed based on Co(II)-catalyzed asymmetric cyclopropanation of alkenes. / Thesis (PhD) — Boston College, 2022. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
3

Unique Reactivity Patterns Catalyzed by Internal Lewis Acid Assisted Hydrogen Bond Donors

Auvil, Tyler Jay 18 September 2014 (has links)
No description available.
4

Boronate Urea Activation of Nitro Compounds

So, Sonia 06 June 2014 (has links)
No description available.
5

Fonctionnalisation d'halocyclopropanes et préparation de composés diazoïques semi- et non-stabilisés pour la synthèse de cyclopropanes polysubstitués

Allouche, Emmanuelle 08 1900 (has links)
Les cyclopropanes sont des motifs régulièrement incorporés lors du développement de nouvelles molécules bioactives de par les propriétés qu’ils apportent à celles-ci. Cela a donc poussé les chimistes organiciens à développer de nouvelles méthodologies pour leur synthèse en modulant notamment les différentes substitutions. Les travaux de cette thèse s’inscrivent donc dans cette thématique : le développement de méthodologies permettant l’accès à des cyclopropanes hautement substitués. Afin d’accéder à des motifs 1,2,3-trisubstitués et stéréoenrichis, nous avons dans un premier temps envisagé de réaliser des couplages de Suzuki-Miyaura sur des halocyclopropanes 2,3-disubstitués synthétisés dans le groupe grâce à l’utilisation du ligand chiral de type dioxaborolane. Des conditions douces et reproductibles ont été développées, notamment grâce à la synthèse d’un pré-catalyseur de type Buchwald. Les chapitres suivants ont été consacrés à la synthèse de motifs cyclopropaniques substitués de manière plus directe en utilisant des composés diazoïques portant les groupements à introduire. Des diazoalcanes semi-stabilisés (portant des groupements possédant des liaisons π proximales tels que des aryles ou des alcènes) ont tout d’abord été employés. L’utilisation d’une porphyrine de fer a permis de réaliser des cyclopropanations d’aryldiazométhanes générés in situ à partir de 2-nosylhydrazones dans des conditions douces, ce qui a permis d’élargir la gamme de composés diazoïques semi-stabilisés utilisables en cyclopropanation. Nous avons par la suite envisagé de réaliser des cyclopropanations de dialkyldiazoalcanes générés in situ à partir d’arylsulfonylhydrazones. Des gem-diméthyl cyclopropanes, motifs d’intérêt pour l’industrie pharmaceutique, ont été synthétisés avec succès et ce sans nécessiter la présence d’un catalyseur métallique. De hautes températures ont cependant été nécessaires. À cause de ces conditions très dures, nous nous sommes tournés vers une autre stratégie pour la synthèse de composés diazoïques non-stabilisés. Nous avons alors envisagé d’oxyder des hydrazones libres, ce processus pouvant se dérouler à basses températures et générant moins de déchets. Après l’achèvement d’un projet initié par d’autres membres du groupe employant une quantité stœchiométrique d’un oxydant métallique, nous nous sommes tournés vers l’utilisation de l’iodosylbenzène. Cet oxydant organique a permis la génération de nombreux composés diazoïques aliphatiques et a été compatible avec une réaction de cycloaddition [3+2] in situ de divers accepteurs de Michael. Alors que les conditions réactionnelles ne permettaient pas la conversion spontanée de toutes les 1-pyrazolines générées en cyclopropanes, un processus de photolyse en chimie en flux continu a été développé afin d’induire ces contractions de cycle. Des dérivés d’amino acides non naturels ainsi que des gem-diméthyl cyclopropanes ont été obtenus avec de hauts rendements. En immobilisant l’iodosylbenzène dans un réacteur à garnissage et en utilisant la technologie en flux continu, nous avons par la suite généré des solutions relativement pures de phényldiazométhane. Cependant, la génération de composés diazoïques non-stabilisés en utilisant ce processus s’est avérée plus complexe en raison de diverses incompatibilités. Enfin, la synthèse de cyclopropanes substitués par des groupements amino, alkoxy ou aryloxy a été envisagée via l’utilisation de composés diazoïques substitués par ces hétéroatomes. Lors de l’initiation de ces travaux, un faible rendement en aminocyclopropane a été obtenu, indiquant néanmoins la génération et cyclopropanation du composé diazoïque déstabilisé désiré. / The cyclopropane moiety is present in a large number of bioactive molecules as its incorporation usually improves their physicochemical properties. As a result, the development of new methodologies allowing the synthesis of various substituted cyclopropanes have become of significant interest. In order to access stereoenriched 1,2,3-trisubstituted cyclopropanes, we first developed a Suzuki-Miyaura cross-coupling of 2,3-disubstituted halocyclopropanes synthesized in the group using a chiral dioxaborolane ligand. Mild and highly reproducible reaction conditions were developed, especially thanks to the synthesis of a Buchwald type pre-catalyst. The next chapters were devoted to the synthesis of substituted cyclopropanes using diazo compounds bearing the groups to introduce. Semi-stabilized diazoalkanes (bearing π-system-containing groups such as aryl or alkene moieties) were first employed. The use of an iron porphyrin allowed the cyclopropanation of aryldiazomethanes generated in situ from 2-nosylhydrazones under mild conditions, enabling a broader scope of semi-stabilized diazo compounds that can be used in cyclopropanation reactions. Then, we investigated the cyclopropanation of dialkyldiazoalkanes generated in situ from arylsulfonylhydrazones. Gem-dimethyl cyclopropanes, motifs of particular interest in medicinal chemistry, were synthesized under metal-free conditions. However, high temperatures were needed to decompose the diazo precursors. Because of these harsh reaction conditions, we moved to another strategy enabling the synthesis of non-stabilized diazo compounds. We envisioned the oxidation of free hydrazones, being a more atom economical process that typically requires lower temperatures. After the completion of a project initiated by other group members employing stoichiometric amounts of a metallic reagent, we investigated the use of an organic oxidant. Iodosylbenzene allowed the generation of numerous aliphatic diazo compounds and was compatible with the in situ [3+2] cycloaddition of various Michael acceptors. Conversion of the 1-pyrazolines into the corresponding cyclopropanes was not always spontaneous under these reaction conditions, and therefore a photolysis process using continuous flow was developed in order to induce the ring contractions. Unnatural amino acids and gem-dimethyl cyclopropanes were synthesized in high yields using methodology. Immobilizing the iodosylbenzene in a packed bed reactor using a continuous flow set up allowed us to rapidly generate clean solutions of phenyldiazomethane. However, the production of non-stabilized diazo compounds using this process turned out to be more complicated due to numerous incompatibilities. Finally, the syntheses of amino-, alkoxy- or aryloxycyclopropanes were attempted by generating heteroatom-substituted diazo compounds from the corresponding free hydrazones. An aminocyclopropane was obtained during the initial investigation of this reaction. Although in low yield, this result showed the feasibility of each and every step.
6

Synthèse et fonctionnalisation de borocyclopropanes et développement d’un procédé de synthèse de diazoalcanes non-stabilisés en utilisant la technologie en débit continu

Benoit, Guillaume 12 1900 (has links)
No description available.
7

Synthèse stéréosélective de dérivés cyclopropaniques di-accepteurs par catalyse avec des complexes de rhodium(II)

Lindsay, Vincent 08 1900 (has links)
Les dérivés cyclopropaniques di-accepteurs représentent des intermédiaires synthétiques précieux dans l’élaboration de structures moléculaires complexes, ayant des applications dans plusieurs domaines de la chimie. Au cours de cet ouvrage, nous nous sommes intéressés à la synthèse de ces unités sous forme énantioenrichie en utilisant la cyclopropanation d’alcènes par catalyse avec des complexes de Rh(II) utilisant des composés diazoïques di-accepteurs comme substrats. Suite au développement initial d’une méthode de cyclopropanation d’alcènes catalytique asymétrique utilisant des nitro diazocétones, de multiples études expérimentales quant au mécanisme de stéréoinduction dans ce type de réaction ont été effectuées. Nous avons alors pu identifier le groupement p-méthoxyphénylcétone du substrat et le catalyseur Rh2(S-TCPTTL)4 comme étant une combinaison clé pour l’atteinte de diastéréosélectivités et d’excès énantiomères élevés. Ceci a mené au développement de deux autres méthodes de cyclopropanation stéréosélectives distinctes, utilisant soit une cyano diazocétone ou un céto diazoester. Nous avons démontré l’utilité des dérivés cyclopropaniques énantioenrichis obtenus par ces trois méthodes dans une panoplie de manipulations synthétiques, dont l’addition nucléophile d’amines et de cuprates, la cycloaddition formelle avec un aldéhyde, et la synthèse de dérivés cyclopropaniques importants en chimie médicinale. Une étude structurelle approfondie des complexes de Rh(II) chiraux nous a permis de déterminer les facteurs responsables de leur pouvoir d’énantioinduction dans notre système réactionnel, ce qui a d’énormes implications dans d’autres méthodologies utilisant ces mêmes catalyseurs. Le dévoilement d’une conformation inattendue dite ‘All-up’, ainsi que de la présence d’interactions stabilisantes régissant la rigidité de cet arrangement se sont avérés cruciaux dans notre compréhension du mécanisme. Dans le cadre de cette investigation, nous avons développé une méthode générale pour la synthèse de complexes de Rh(II) hétéroleptiques, multipliant ainsi le nombre de catalyseurs accessibles dans l’élaboration éventuelle de nouvelles réactions stéréosélectives, et nous permettant d’effectuer une étude structurelle plus détaillée. De plus, nous avons développé une méthode particulièrement efficace pour la synthèse d’un autre type de dérivé cyclopropanique di-accepteur par catalyse avec des complexes de Rh(II), les cyano-cyclopropylphosphonates. Les produits de cette transformation sont obtenus avec des énantiosélectivités élevées, et sont des substrats intéressants pour des réactions tandem d’ouverture de cycle par addition nucléophile / oléfination de composés carbonylés. De plus, ces composés sont des précurseurs de molécules utiles en chimie médicinale tels que les acides aminocyclopropylphosphoniques. / Di-acceptor cyclopropane derivatives are valuable synthetic intermediates in the preparation of complex molecular structures, with applications in several fields of chemistry. During this work, we investigated the synthesis of these units in enantioenriched form via the Rh(II)-catalyzed cyclopropanation of alkenes using di-acceptor diazo compounds as substrates. Following the initial development of a method for the catalytic asymmetric cyclopropanation of alkenes using nitro diazoketones, many experimental studies on the mechanism of stereoinduction in this reaction were performed. We were able to identify the p-methoxyphenylketone group of the substrate and catalyst Rh2(S-TCPTTL)4 as a key combination for the obtention of high diastereoselectivities and enantiomeric excesses. This led to the development of two distinct stereoselective cyclopropanation methods, using either an cyano diazoketone or a keto diazoester. We demonstrated the utility of the enantioenriched cyclopropane derivatives obtained by these three methods in a variety of synthetic manipulations, including the nucleophilic addition of amines and cuprates, the formal cycloaddition with an aldehyde, and the synthesis of biologically relevant cyclopropane derivatives. A thorough structural study of chiral Rh(II) complexes allowed us to determine the factors responsible for their enantioinduction ability in our reaction system, which has enormous implications in other metal-carbene reactions using these catalysts. The unveiling of an unexpected conformation called 'All-up', and the presence of stabilizing interactions controlling the rigidity of this arrangement have been crucial in our understanding of the mechanism. As part of this investigation, we developed a general method for the synthesis of heteroleptic Rh(II) complexes, thus multiplying the number of catalysts available in the development of new stereoselective reactions, and allowing us to conduct a more detailed structural study. Moreover, we have developed a particularly efficient method for the synthesis of another type of di-acceptor cyclopropane derivative via Rh(II) catalysis, cyanocyclopropylphosphonates. The highly enantioenriched products obtained in this transformation are interesting substrates for tandem reactions of nucleophilic addition / olefination of carbonyl compounds, and are precursors of useful molecules in medicinal chemistry, such as aminocyclopropylphosphonic acids.
8

Synthèse stéréosélective de dérivés cyclopropaniques di-accepteurs par catalyse avec des complexes de rhodium(II)

Lindsay, Vincent 08 1900 (has links)
Les dérivés cyclopropaniques di-accepteurs représentent des intermédiaires synthétiques précieux dans l’élaboration de structures moléculaires complexes, ayant des applications dans plusieurs domaines de la chimie. Au cours de cet ouvrage, nous nous sommes intéressés à la synthèse de ces unités sous forme énantioenrichie en utilisant la cyclopropanation d’alcènes par catalyse avec des complexes de Rh(II) utilisant des composés diazoïques di-accepteurs comme substrats. Suite au développement initial d’une méthode de cyclopropanation d’alcènes catalytique asymétrique utilisant des nitro diazocétones, de multiples études expérimentales quant au mécanisme de stéréoinduction dans ce type de réaction ont été effectuées. Nous avons alors pu identifier le groupement p-méthoxyphénylcétone du substrat et le catalyseur Rh2(S-TCPTTL)4 comme étant une combinaison clé pour l’atteinte de diastéréosélectivités et d’excès énantiomères élevés. Ceci a mené au développement de deux autres méthodes de cyclopropanation stéréosélectives distinctes, utilisant soit une cyano diazocétone ou un céto diazoester. Nous avons démontré l’utilité des dérivés cyclopropaniques énantioenrichis obtenus par ces trois méthodes dans une panoplie de manipulations synthétiques, dont l’addition nucléophile d’amines et de cuprates, la cycloaddition formelle avec un aldéhyde, et la synthèse de dérivés cyclopropaniques importants en chimie médicinale. Une étude structurelle approfondie des complexes de Rh(II) chiraux nous a permis de déterminer les facteurs responsables de leur pouvoir d’énantioinduction dans notre système réactionnel, ce qui a d’énormes implications dans d’autres méthodologies utilisant ces mêmes catalyseurs. Le dévoilement d’une conformation inattendue dite ‘All-up’, ainsi que de la présence d’interactions stabilisantes régissant la rigidité de cet arrangement se sont avérés cruciaux dans notre compréhension du mécanisme. Dans le cadre de cette investigation, nous avons développé une méthode générale pour la synthèse de complexes de Rh(II) hétéroleptiques, multipliant ainsi le nombre de catalyseurs accessibles dans l’élaboration éventuelle de nouvelles réactions stéréosélectives, et nous permettant d’effectuer une étude structurelle plus détaillée. De plus, nous avons développé une méthode particulièrement efficace pour la synthèse d’un autre type de dérivé cyclopropanique di-accepteur par catalyse avec des complexes de Rh(II), les cyano-cyclopropylphosphonates. Les produits de cette transformation sont obtenus avec des énantiosélectivités élevées, et sont des substrats intéressants pour des réactions tandem d’ouverture de cycle par addition nucléophile / oléfination de composés carbonylés. De plus, ces composés sont des précurseurs de molécules utiles en chimie médicinale tels que les acides aminocyclopropylphosphoniques. / Di-acceptor cyclopropane derivatives are valuable synthetic intermediates in the preparation of complex molecular structures, with applications in several fields of chemistry. During this work, we investigated the synthesis of these units in enantioenriched form via the Rh(II)-catalyzed cyclopropanation of alkenes using di-acceptor diazo compounds as substrates. Following the initial development of a method for the catalytic asymmetric cyclopropanation of alkenes using nitro diazoketones, many experimental studies on the mechanism of stereoinduction in this reaction were performed. We were able to identify the p-methoxyphenylketone group of the substrate and catalyst Rh2(S-TCPTTL)4 as a key combination for the obtention of high diastereoselectivities and enantiomeric excesses. This led to the development of two distinct stereoselective cyclopropanation methods, using either an cyano diazoketone or a keto diazoester. We demonstrated the utility of the enantioenriched cyclopropane derivatives obtained by these three methods in a variety of synthetic manipulations, including the nucleophilic addition of amines and cuprates, the formal cycloaddition with an aldehyde, and the synthesis of biologically relevant cyclopropane derivatives. A thorough structural study of chiral Rh(II) complexes allowed us to determine the factors responsible for their enantioinduction ability in our reaction system, which has enormous implications in other metal-carbene reactions using these catalysts. The unveiling of an unexpected conformation called 'All-up', and the presence of stabilizing interactions controlling the rigidity of this arrangement have been crucial in our understanding of the mechanism. As part of this investigation, we developed a general method for the synthesis of heteroleptic Rh(II) complexes, thus multiplying the number of catalysts available in the development of new stereoselective reactions, and allowing us to conduct a more detailed structural study. Moreover, we have developed a particularly efficient method for the synthesis of another type of di-acceptor cyclopropane derivative via Rh(II) catalysis, cyanocyclopropylphosphonates. The highly enantioenriched products obtained in this transformation are interesting substrates for tandem reactions of nucleophilic addition / olefination of carbonyl compounds, and are precursors of useful molecules in medicinal chemistry, such as aminocyclopropylphosphonic acids.

Page generated in 0.0496 seconds