• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Perceptions regarding medical management of clubfoot in Kenya

Kingau, Naomi Wanjiru January 2012 (has links)
Magister Scientiae (Physiotherapy) - MSc(Physio) / Clubfoot is one of the congenital and structural conditions that lead to physical impairment in children globally. Service providers have different perceptions on the various methods of management of clubfoot. This has led to adoption of various approaches of management of clubfoot. Although there is a wide range of experiences of parents/caregivers of children with clubfoot regarding medical management of this condition, there is no documented data on these experiences. The study therefore aimed at exploring the perceptions regarding the medical management of clubfoot in Kenya. The objectives of this study were to explore the service providers and parents/caregivers perceptions on the use of the different methods of medical management of clubfoot; explore the process followed before and after the commencement of management from the service providers and parents/caregivers when using surgical and conservative methods of management as well as exploring the barriers and enabling factors that the service providers experience during the management of clubfoot. Methodology: This study was conducted at talipes clinic of Mbagathi District Hospital, Kenyatta National Hospital and Kijabe Mission Hospital in Kenya. The study utilized a qualitative design and purposive convenient sampling was utilized to recruit participants. Twenty participants were recruited; the sample consisted of ten parents/caregivers of children with clubfoot and ten service providers. Semi-structured interview and probes were used for data collection, interviews were audiotaped and a research assistant took notes, data was collected until saturation. Data was transcribed verbatim and analyzed by thematic-content analysis. The results indicated that most of the service providers perceived Ponseti method as the most effective method of clubfoot management with early intervention. Surgery was found to be the second most utilized method which was indicated for complex and neglected clubfoot. The factors that affected service providers in clubfoot management included: Shortage of trained staff in Ponseti management, missed diagnosis at birth; poor referral system and poor compliance with treatment appointments. The factors that affected parents/caregivers compliance with the treatment regime included: (i) unaffordable transport expenses; (ii) long distance; (iii) little or no social/family support; culture/tradition and stigmatization while compliance was facilitated by (i) good communication between the parents/caregivers and the clinician; (ii) availability of free services (iii) social/ family support. Conclusion: The current study concluded that medical management of clubfoot was a success while majority of parents/caregivers agreed that they were faced with several challenges as fore mentioned which affected the outcome. Recommendation: the study therefore recommends the need to empower the community and service provider with knowledge on clubfoot and its management. There is also need for decentralisation of services and increase the number of health care givers in health facilities who are trained in clubfoot management. Finally physiotherapy academic institutions need to put emphasis on teaching clubfoot management in order to produce effective service providers.
2

[en] A CONSERVATIVE METHOD TO ANALYSE TRANSIENT FLOW OF GASES/LIQUIDS IN PIPELINES / [es] UN MÉTODO CONSERVATIVO PARA ANÁLISIS DE TRANSIENTES DE GASES/LÍQUIDOS EN TUBULACIONES / [pt] UM MÉTODO CONSERVATIVO PARA ANÁLISE DE TRANSIENTES DE GASES/LÍQUIDOS EM TUBULAÇÕES

OLDRICH JOEL ROMERO GUZMAN 07 August 2001 (has links)
[pt] O presente trabalho tem como principal objetivo resolver numericamente o escoamento de líquidos e gases isotérmicos ou não, no regime transiente em tubulações industriais com área variável. Pretende-se ainda, investigar os campos de velocidade,pressão e temperatura na presença de vazamentos na tubulação. O código computacional implementado resolve as equações de conservação de massa, quantidade de movimento linear e da energia na sua forma conservativa. Este enfoque permite obter resultados importantes, dentre os quais pode- se destacar a capacidade de reproduzir as perturbações nos campos de velocidade e pressão, uma vez iniciado o vazamento do fluido num determinado instante de tempo e em qualquer ponto da tubulação. Para a solução numérica do escoamento unidimensional em coordenadas retangulares utilizou-se o método de volumes finitos. A discretização espacial foi realizada baseada no método - upwind - e para a discretização temporal utilizou- se o método totalmente implícito. As equações de conservação de massa e quantidade de movimento linear são resolvidas diretamente, através da solução de uma matriz hepta-diagonal. A seguir resolvese a equação da energia por um algoritmo para matrizes tri- diagonais. Como as equações são não lineares, um processo iterativo é necessário. Para validar o metodologia empregada, são efetuados vários testes com casos registrados na literatura e resolvidos problemas que apresentam solução analítica. Uma comparação entre o enfoque conservativo e não conservativo é apresentada. Finalmente,investiga-se a resposta do campo de pressão e velocidade para a presença de vazamentos na tubulação. / [en] The main objective of the present work is to solve numerically the flow of liquid and gases isothermal or not, in the transient regime, in industrial pipes with variable area. It also has as objective to investigate the velocity, pressure and temperature field in the presence of fluid leak in the pipe. The numerical code was implemented to solve the conservation of mass, momentum, and energy in its conservative form. This approach is very convenient to study the perturbations in the velocity and temperature fields, once a leakage is detected in some point along the point, in a certain time. The numerical solution for the one-dimensional flow in rectangular coordinates is obtained by the finite volume method. The spatial discretization is based on the upwind method and totally implicit time integration is employed. The conservation of mass and linear momentum are directly solved through an hepta-diagonal matrix algorithm, followed by the solution of the energy equation by a three-diagonal algorithm. Since the conservation equations are non- linear, an iterative procedure is necessary. To validate the methodology presented, several tests of different case tests available in the literature were solved, as well as tests with analytical solution. A comparison between the conservative and non-conservative approach is presented. Finally, some test cases with leakage are examined. / [es] El presente trabajo tiene como principal objetivo resolver numéricamente el flujo de líquidos y gases isotérmicos o no, en régimen transitorio, en tuberías industriales con área variable. Se pretenden investigar los campos de velocidad, presión y temperatura en presencia de escape en la tubería. El código computacional implementado resuelve las ecuaciones de conservación de masa, cantidad de movimiento lineal y de la energía en su forma conservativa. Este enfoque permite obtener resultados importantes, dentro de los cuales cabe destacar la capacidad de reproducir las perturbaciones en los campos de velocidad y presión, una vez iniciado el escape del fluido en un determinado instante de tiempo y en cualquier punto de la tubería. Para la solución numérica del flujo unidimensional en coordenadas rectangulares se utilizó el método de volúmenes finitos. La discretización espacial se realizó a través del método - upwind - y para la discretización en el tiempo, se utilizó el método totalmente implícito. Las ecuaciones de conservación de masa y de cantidad de movimiento lineal se resuelven directamente, a través de la solución de una matriz heptadiagonal. A seguir se resuelve la ecuación de la energía por un algoritmo para matrizes tri-diagonales. Como las ecuaciones son no lineales, se necesita un proceso iterativo. Para evaluar la metodología utilizada, se efectúan varios experimentos con casos registrados en la literatura y se resuelven algunos problemas que presentan solución analítica. Se presenta una comparación entre el enfoque conservativo y no conservativo. Finalmente, se investiga la respuesta del campo de presión y velocidad en presencia de escapes en la tubería.
3

Theoretical and numerical aspects of advection-pressure splitting for 1D blood flow models

Spilimbergo, Alessandra 19 April 2024 (has links)
In this Thesis we explore, both theoretically and numerically, splitting strategies for a hyperbolic system of one-dimensional (1D) blood flow equations with a passive scalar transport equation. Our analysis involves a two-step framework that includes splitting at the level of partial differential equations (PDEs) and numerical methods for discretizing the ensuing problems. This study is inspired by the original flux splitting approach of Toro and Vázquez-Cendón (2012) originally developed for the conservative Euler equations of compressible gas dynamics. In this approach the flux vector in the conservative case, and the system matrix in the non-conservative one, are split into advection and pressure terms: in this way, two systems of partial differential equations are obtained, the advection system and the pressure system. From the mathematical as well as numerical point of view, a basic problem to be solved is the special Cauchy problem called the Riemann problem. This latter provides an analytical solution to evaluate the performance of the numerical methods and, in our approach, it is of primary importance to build the presented numerical schemes. In the first part of the Thesis a detailed theoretical analysis is presented, involving the exact solution of the Riemann problem for the 1D blood flow equations, depicted for a general constant momentum correction coefficient and a tube law that allows to describe both arteries and veins with continuous or discontinuous mechanical and geometrical properties and an advection equation for a passive scalar transport. In literature, this topic has been already studied only for a momentum correction coefficient equal to one, that is related to the prescribed velocity profile and in this case corresponds to a flat one, i.e. an inviscid fluid. In the case of discontinuous properties, only the subsonic regime is considered. In addition we propose a procedure to compute the obtained exact solution and finally we validate it numerically, by comparing exact solutions to those obtained with well-known, numerical schemes on a carefully designed set of test problems. Furthermore, an analogous theoretical analysis and resolution algorithm are presented for the advection system and the pressure system arising from the splitting at the level of PDEs of the complete system of 1D blood flow equations. It is worth noting that the pressure system, in case of veins, presents a loss of genuine non-linearity resulting in the formation of rarefactions, shocks and compound waves, these latter being a composition of rarefactions and shocks. In the second part of the Thesis we present novel finite volume-type, flux splitting-based, numerical schemes for the conservative 1D blood flow equations and splitting-based numerical schemes for the non-conservative 1D blood flow equations that incorporate an advection equation for a passive scalar transport, considering tube laws that allow to model blood flow in arteries and veins and take into account a general constant momentum correction coefficient. A detailed efficiency analysis is performed in order to showcase the advantages of the proposed methodologies in comparison to standard approaches.
4

CONSISTENT AND CONSERVATIVE PHASE-FIELD METHOD FOR MULTIPHASE FLOW PROBLEMS

Ziyang Huang (11002410) 23 July 2021 (has links)
<div>This dissertation focuses on a consistent and conservative Phase-Field method for multiphase flow problems, and it includes both model and scheme development. The first general question addressed in the present study is the multiphase volume distribution problem. A consistent and conservative volume distribution algorithm is developed to solve the problem, which eliminates the production of local voids, overfilling, or fictitious phases, but follows the mass conservation of each phase. One of its applications is to determine the Lagrange multipliers that enforce the mass conservation in the Phase-Field equation, and a reduction consistent conservative Allen-Cahn Phase-Field equation is developed. Another application is to remedy the mass change due to implementing the contact angle boundary condition in the Phase-Field equations whose highest spatial derivatives are second-order. As a result, using a 2nd-order Phase-Field equation to study moving contact line problems becomes possible.</div><div><br></div><div>The second general question addressed in the present study is the coupling between a given physically admissible Phase-Field equation to the hydrodynamics. To answer this general question, the present study proposes the <i>consistency of mass conservation</i> and the <i>consistency of mass and momentum transport</i>, and they are first implemented to the Phase-Field equation written in a conservative form. The momentum equation resulting from these two consistency conditions is Galilean invariant and compatible with the kinetic energy conservation, regardless of the details of the Phase-Field equation. It is further illustrated that the 2nd law of thermodynamics and <i>consistency of reduction</i> of the entire multiphase system only rely on the properties of the Phase-Field equation. All the consistency conditions are physically supported by the control volume analysis and mixture theory. If the Phase-Field equation has terms that are not in a conservative form, those terms are treated by the proposed consistent formulation. As a result, the proposed consistency conditions can always be implemented. This is critical for large-density-ratio problems.</div><div><br></div><div>The consistent and conservative numerical framework is developed to preserve the physical properties of the multiphase model. Several new techniques are developed, including the gradient-based phase selection procedure, the momentum conservative method for the surface force, the boundedness mapping resulting from the volume distribution algorithm, the "DGT" operator for the viscous force, and the correspondences of numerical operators in the discrete Phase-Field and momentum equations. With these novel techniques, numerical analyses ensure that the mass of each phase and momentum of the multiphase mixture are conserved, the order parameters are bounded in their physical interval, the summation of the volume fractions of the phases is unity, and all the consistency conditions are satisfied, on the fully discrete level and for an arbitrary number of phases. Violation of the consistency conditions results in inconsistent errors proportional to the density contrasts of the phases. All the numerical analyses are carefully validated, and various challenging multiphase flows are simulated. The results are in good agreement with the exact/asymptotic solutions and with the existing numerical/experimental data.</div><div> </div><div><br></div><div>The multiphase flow problems are extended to including mass (or heat) transfer in moving phases and solidification/melting driven by inhomogeneous temperature. These are accomplished by implementing an additional consistency condition, i.e., <i>consistency of volume fraction conservation</i>, and the diffuse domain approach. Various problems are solved robustly and accurately despite the wide range of material properties in those problems.</div>

Page generated in 0.03 seconds