• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 587
  • 272
  • 104
  • 103
  • 37
  • 34
  • 22
  • 20
  • 18
  • 18
  • 18
  • 18
  • 18
  • 17
  • 12
  • Tagged with
  • 1447
  • 424
  • 218
  • 191
  • 183
  • 173
  • 144
  • 140
  • 137
  • 134
  • 126
  • 125
  • 112
  • 108
  • 107
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Single-Phase And Multi-Phase Convection During Solidification Of Non-eutectic Binary Solutions

Chakraborty, Prodyut Ranjan 02 1900 (has links) (PDF)
During solidification of non-eutectic alloys, non-isothermal phase change causes dendritic growth of solid front with liquid phase entrapped within the dendritic network producing the mushy region. Solidification causes rejection of solute at the solid-liquid interface and within the mushy zone, causing a sharp concentration gradient to build up across the mushy region. At the same time, a temperature gradient is present as a result of externally imposed boundary conditions as well as due to evolution of latent heat, giving rise to the so-called “double-diffusive” or thermo-solutal convection. Depending on the relative density of the solute being rejected in the liquid phase during solidification process, thermal and solutal buoyancy can either aid or oppose each other. Rejection of a heavier solute leads to aiding thermo-solutal convection situation whereas the rejection of lighter solute causes the thermal and solutal buoyancy to oppose each other. If the thermal and solutal buoyancies oppose each other, flow instability arises adjacent to the mush-bulk liquid interface regions. Thus, there may be a wide variety of convection situations present in the solidifying domain for different combinations of solution concentrations and externally imposed boundary conditions. The situation becomes even more complex if the solid phase movement along with the bulk flow is involved in the process, leading to multiphase convection. Detachment of solid phase from the solid/liquid interface can be caused by remelting (solutal and/or thermal) and shearing action of a convecting liquid adjacent to the interface. Depending on the drag of the bulk flow and the density of the solid phase relative to that of the bulk liquid, these detached particles can either float or sediment. The redistribution of the rejected solute by means of diffusion (at a local scale) and thermo-solutal convection (at system level length scales) causes heterogeneous orientation of mixture constituents over the solidifying domain popularly known as macro-segregation. From the point of view of manufacturing, severe form of macro-segregation or heterogeneous species distribution is an undesirable phenomenon and hence, a thorough understanding of the species redistribution by means of diffusion and convection during solidification process is very important. Most of the earlier studies on double diffusive convection during solidification involved fixed dendrites. However, the advection of solid particles during the solidification process can generate major instability in the flow pattern while modifying the solid front growth, and hence the macro-segregation pattern considerably. With this viewpoint in mind, the overall objective of the present work is to address these wide-varieties of single phase and multi phase flow situations and their effect on solid front growth and macro-segregation during directional solidification of non-eutectic binary alloys, numerically as well as experimentally. Different configurations of directional solidification processes involving double diffusive convection have been studied for two different kinds of non-eutectic solutions. While solidification of hypoeutectic solutions leads to aiding type double diffusive convection, the solidification of hyper-eutectic solutions is characterized by opposing type double diffusive convection. Solidification of hypo-eutectic solution generally involves single phase flow, while most of the hyper-eutectic solidification involves movement of solid phase (i.e. multiphase flow). As far as the modeling part is concerned, transport phenomena during solidification with multiphase convection are not common in existing literature. This work is a first attempt to develop a solidification model with multiphase flow based entirely on macroscopic parameters. As a first step, a generalized macroscopic framework has been developed for mathematical modeling of multiphase flow during solidification of binary alloy systems. The complete set of equivalent single-domain governing equations (mass, momentum, energy and species conservation) are coupled with the phase (solid and liquid) velocities. A generalized algorithm has been developed to determine solid detachment and solid advection phenomena, based on two critical parameters, namely: critical solid fraction and critical velocity. While the first of these two parameters (critical solid fraction) represents the strength of the dendritic bond, the second (critical velocity) stands for the intensity of flow to create drag force and solutal remelting at the dendrite roots. A new approach for evaluating liquid/solid fraction by using fixed grid enthalpy updating scheme, that accounts for multiphase flow and, at the same time, handles equilibrium and non equilibrium solidification mechanisms, has been proposed. The newly developed model has been validated with existing literatures as well as with experimental observations performed in the present work. The experimental results were obtained by using PIV as well as laser scattering techniques. Side cooled as well as top cooled configurations are studied. Single phase convection is observed for the case of hypo-eutectic solution, whereas hyper-eutectic solutions involve convection with movement of solid phase. For the case of bottom cooled hyper-eutectic solution, finger-like convection leading to freckle formation is observed. For all the hyper-eutectic cases, solid phase movement is found to alter the convection pattern and final macrosegregation significantly. The numerical results are compared with experimental observations both qualitatively as well as quantitatively.
202

Convection de Rayleigh-Bénard pour des fluides rhéofluidifiants : approche théorique et expérimentale / Rayleigh-Bénard convection in shear-thinning fluids : Theoretical and experimental approaches

Bouteraa, Mondher 07 March 2016 (has links)
Une étude théorique et expérimentale de la convection de Rayleigh-Bénard pour un fluide non-Newtonien rhéofluidifiant a été effectuée. L’approche théorique consiste en une analyse linéaire et faiblement non linéaire de l’instabilité thermo-convective d’une couche horizontale d’un fluide non-Newtonien, d’étendue supposée infinie dans le plan horizontal, chauffée par le bas et refroidie par le haut. Le comportement rhéofluidifiant est décrit par le modèle de Carreau. Pour ce modèle, les conditions critiques d’instabilité du régime conductif sont les mêmes que pour un fluide Newtonien. L’objectif de l’analyse faiblement non linéaire consiste à déterminer d’une part la valeur critique du degré de rhéofluidification à partir duquel la bifurcation primaire devient sous critique et d’autre part l’influence de rhéofluidification sur la sélection du motif de convection au voisinage des conditions critiques, en tenant compte d’un éventuel glissement à la paroi, d’une conductivité thermique finie de celle-ci et de la thermodépendance de la viscosité. Les conséquences sur le champ de viscosité et l’évolution du nombre de Nusselt sont caractérisées. L’approche expérimentale consiste à visualiser par ombroscopie les motifs de convection qui se développent dans une cellule cylindrique. Deux rapports d’aspect ont été considérés : AR = 3 et AR = 4. Les fluides utilisés sont des solutions aqueuses de Xanthan à différentes concentrations. L’influence du degré de rhéofluidification combiné avec la thermodépendance de la viscosité sur le domaine de stabilité des rouleaux et des hexagones ainsi que sur la zone de transitions rouleaux hexagones est mise en évidence / Theoretical and experimental study of Rayleigh-Bénard convection in a non-Newtonian shear-thinning fluid was performed. The theoretical approach consists in a linear and a weakly nonlinear of thermo-convective instability in a horizontal layer of a non-Newtonian fluid, assumed infinite in extent, heated from below and cooled from above. The rheological behavior of the fluid is described by the Carreau model. For this rheological model, the critical threshold is the same as for a Newtonian fluid. The objective of the weakly non linear analysis is to determine on one hand the critical value of the shear-thinning degree above which the bifurcation becomes subcritical and on the other hand, the influence of shear-thinning effects on the pattern selection near the onset, taking into account the possibility of wall slip, a finite thermal conductivity of the walls as well as the thermo-dependency of the viscosity. The impact on the viscosity field and on the evolution of the Nusselt number are characterized. The experimental approach consists in visualizing the convection patterns using the shadowgraph method in a cylindrical cell. Two aspect ratios were considered : AR = 3 and AR = 4. The fluids used are aqueous solutions of xanthan-gum at different concentrations. The influence of shear-thinning effects combined with the thermo-dependency of the viscosity on the stability domain of rolls and hexagons as well as on the transition between rolls and hexagons is highlighted
203

Importance de l'humidification de l'anode pour une pile à combustible miniature fonctionnant en convection naturelle

Hamel, Simon January 2011 (has links)
Ce mémoire présente l'étude de l'impact de l'humidification de l'anode lors du fonctionnement d'une pile à combustible miniature à base de membrane d'échange protonique (mPEMFC) et opérant par convection naturelle. Les phénomènes d'inondation de la cathode et d'assèchement de l'anode qui limitent les performances des mPEMFCs en convection naturelle sont étudiés et il est démontré qu'ils peuvent se produire simultanément lors du fonctionnement de la pile. Cela est mis en évidence grâce à un modèle analytique simple et à une démonstration expérimentale. Lors de cette étude, un modèle analytique simple en une dimension est réalisé. Celui-ci a pour but de comparer les flux d'eau engendrés par les phénomènes dominants de transport à l'intérieur de la membrane ionique. L'eau produite à la cathode par la pile est évaporée ou retournée vers l'anode par diffusion inverse. De plus, les protons qui traversent la membrane de l'anode vers la cathode engendrent le flux électroosmotique. Ces phénomènes sont fonction de l'humidité relative extérieure, de la température de la pile et du courant demandé à cette dernière. Les résultats donnés par le modèle ont été validés expérimentalement en injectant de l'eau directement à la surface de l'anode de manière à garder son humidité constante lors du fonctionnement de la pile. Les résultats obtenus ont par la suite été comparés aux performances d'une mPEMFC en convection naturelle sans injection d'eau afin de faire ressortir l'impact de l'humidification de l'anode. Cette étude a démontre [i.e. démontré] que l'assèchement de l'anode joue un rôle majeur dans les pertes de performance d'une mPEMFC en convection naturelle à basse température. Même si une inondation se produit à la surface de la cathode, l'injection d'eau à l'anode permet d'augmenter le courant ultime de la pile de 100% (de 0,2 à 0,4 A/cm 2 ) et la puissance maximale de celle-ci de 30% (0.06 W/cm 2 à 0.08W/cm2 ). De plus, il est aussi démontré que la quantité d'eau requise pour améliorer les performances de la pile est du même ordre que ce qui est disponible du côté de la cathode lors du fonctionnement de la pile. Les travaux effectués montrent que pour obtenir les performances optimales de la pile, l'eau doit non seulement être retirée de la cathode, mais aussi redirigée vers l'anode pour réduire la résistance ionique de la membrane.
204

Forced convection in curved ducts: multiplicity and stability

Liu, Fang, 劉方 January 2006 (has links)
published_or_final_version / abstract / Mechanical Engineering / Doctoral / Doctor of Philosophy
205

Linear and weakly nonlinear stability of mixed convection boundary layers

Moresco, Pablo Diego January 2000 (has links)
No description available.
206

LONG-TERM VARIATIONS IN THE HIGH-LATITUDE PLASMA FLOWS INFERRED FROM SUPERDARN RADAR DATA

2015 April 1900 (has links)
ABSTRACT This Thesis investigates ionospheric plasma flows (commonly referred to as “convection”) at high latitudes with the objectives to assess seasonal and solar cycle variations in the shape of the flow patterns and the flow intensity in terms of external drivers of the flow, first of all the magnitude and orientation of the interplanetary magnetic field (IMF). Multi-year (2001-1011) line-of-sight Doppler velocity data collected by the Super Dual Auroral Network (SuperDARN) HF radars are considered. Two approaches are used: 1) analysis of monthly-averaged 2-dimentional patterns inferred from data of all SuperDARN radars operated and 2) analysis of near magnetic noon data from only two SuperDARN radars, Rankin Inlet and Inuvik monitoring meridional component of the flow in the near North Pole areas (polar cap). We show and discuss seasonal and solar cycle variations of three characteristics of the flows: magnetic latitudes of the region where plasma flow direction changes from toward the noon to away from the noon (convection reversal boundary), the magnetic local time location of the near noon region with stagnated flow (throat region) and, finally, the magnitude of the flow. All three parameters show trends, although not strong and consistent all the time, which agrees with previous publications where different analysis approaches and more limited data sets were used. For two specific points, one at the magnetic latitude of 72 degrees, representing the auroral oval latitudes (region where optical arcs occur most frequently) and the other one at 82 degrees, representing the polar cap latitudes we demonstrate that the average flow magnitude increases with the IMF intensity, and the effect is much stronger for the negative vertical component of the IMF Bz. In our second approach we demonstrate that the flow velocity increases almost linearly with an increase of the reconnection electric fields characterizing processes of interaction between the solar wind/IMF and the Earth`s magnetic dipole. Saturation effect is seen for strongest electric field. More clear seasonal effects are noticeable in these data; the velocity response to the reconnection electric field enhancement is stronger summer (winter) time for positive (negative) IMF Bz. The data are consistent with previous reports, where highly smoothed velocity data were considered.
207

Convective heat transfer in rooms with ceiling slot diffusers

Goldstein, Kaitlin Ryan 08 September 2010 (has links)
Convection at the interior surface of a building represents a significant portion of the heat transfer in office buildings with large glazing areas. While a large number of these office buildings utilize ceiling slot diffusers at the glazed building perimeter, convection correlations specific to these diffusers have not yet been investigated. This paper describes convection correlations developed for ceiling slot diffusers and examines the effect of temperature, various window geometries, and diffuser jet momentum on these correlations. The paper also examines the effect of venetian blinds on the overall correlations at various blind angle configurations: open, partially open, and closed. The results of the examined phenomena are validated in both heating and cooling conditions. All together, this paper represents the effort of over 100 individual experiments. The results show that forced convection is dominant at all air flow rates, and correlations are developed as a function of air volumetric flow rate with supply air temperature utilized as the reference. The correlations are found to rely only on window position, and are independent of temperature difference between surface and supply, diffuser position, and diffuser jet momentum. With respect to the blinds, the only relevant parameter is the angle of the blinds except when the blinds are open. When the blinds are open and at 45º, convective heat transfer is enhanced. Conversely, convection is decreased when the blinds are closed and at -45º. There is also a decrease in the convective heat transfer with a full window in contrast to a half window when the blinds are open. Finally, there is little difference between the convection correlations developed for heated and cooled environments. / text
208

Contribution à l'étude de la dispersion hydrodynamique et de son couplage à la convection naturelle en milieux poreux modèles fracturés.

Istasse, Eric E. 04 May 2004 (has links)
Le présent manuscrit contribue à l’étude des écoulements liquides dans des milieux poreux artificiels, plus spécifiquement dans les cas où la matrice poreuse présente des gradients de perméabilité importants, par exemple dans un milieu stratifié ou fracturé. Nous étudions l’influence de tels milieux poreux hétérogènes sur différents types d’écoulements. Ce travail est principalement expérimental, mettant en oeuvre une technique optique non-intrusive appelée effet Christiansen. Cette méthode permet de déterminer quantitativement des distributions soit de température, soit de concentration au sein d’un milieu poreux. Trois problèmes physiques sont étudiés: tout d’abord le problème de Horton-Rodgers-Lapwood qui est l’équivalent du très connu problème de Rayleigh-Bénard mais pour un milieu poreux, ensuite les phénomènes de dispersion hydrodynamique que l’on rencontre dans des écoulements multiphasiques. Cette dispersion hydrodynamique est essentiellement envisagée comme un processus macroscopique de diffusion, renforcé par rapport à la diffusion moléculaire que l’on rencontre en milieu fluide libre. Enfin, le troisième problème englobe les écoulements capillaires en milieux poreux en environnement de pesanteur réduite. Dans le cas d’écoulements immiscibles multiphasiques, il faut prendre en considération l’effet de la tension superficielle aux interfaces. Comme les effets capillaires sont partiellement masqués par les effets de pesanteur durant des expériences au sol, une étude précise des effets de mouillage dans ces écoulements en milieu poreux nécessite de les découpler au maximum des autres effets physiques. Un programme de recherche en microgravité a été réalisé, et un nouveau modèle mathématique qui prend en compte l’influence des forces capillaires a été élaboré dans le cadre d’une collaboration entre le Service de Chimie-Physique et le Prof. N.N. Smirnov du Département de Mécanique et de Mathématique de l’Université d’Etat de Moscou. La structure de ce travail part du Chapitre 1, qui présente essentiellement les milieux poreux et leurs spécificités. Ce dernier introduit le formalisme et les concepts nécessaires au traitement des trois problèmes de recherche envisagés. Le Chapitre 2 présente ensuite une étude bibliographique du problème de Horton-Rodgers-Lapwood et des phénomènes de dispersion hydrodynamique en milieux poreux. Le Chapitre 3 est consacré à l’effet Christiansen. Le Chapitre 4 présente les dispositifs de laboratoire mis au point, ainsi qu’une compilation des résultats expérimentaux obtenus. Les problèmes d’écoulements capillaires sont exposés au Chapitre 5, étant donné que la technique expérimentale est différente de celle basée sur l’effet Christiansen. Ce Chapitre compare le nouveau modèle mathématique aux résultats des expériences menées en microgravité durant de nombreuses campagnes de vols paraboliques. Le Chapitre 6 referme ce travail par ses conclusions et perspectives.
209

Thermal and fingering convection in superposed fluid and porous layers.

Chen, Falin. January 1989 (has links)
Thermal and fingering convection in a horizontal porous layer underlying a fluid layer was studied using linear stability analysis, experiment (for the thermal convection case only), and nonlinear simulation. For the thermal convection case, the linear analysis shows that when the fluid layer is thin, convection is largely confined to the porous layer. When the fluid layer thickness exceeds 15% of the porous layer thickness, convection is localized in the fluid layer and the critical wavelength is dramatically reduced. Experimental investigations were then conducted in a test box 24 cm x 12 cm x 4 cm high to substantiate the predictions. The ratio of the thickness of the fluid layer to that of the porous layer, d, varied from 0 to 1. The results were in good agreement with predictions. To investigate supercritical convection, a nonlinear computational study was carried out. It was found that for d ≤ 0.13, the Nusselt number increases sharply with the thermal Rayleigh number, whereas at larger values of d, the increase is more moderate. Heat transfer rates predicted for d = 0.1 and 0.2 are in good agreement with the experimental results. For salt-finger convection at R(m) ≤ 1, the critical value of the solute Rayleigh number R(sm) decreases as d increases; the convection is unicellular. For 5 ≤ R(m) ≤ 10, the critical R(sm) initially decreases with d, and then remains almost constant for larger values of d; multicellular convection prevails at high d. For 20 ≤ R(m) ≤ 50, the critical R(sm) first decreases and then increases as d increases from 0 to 0.1. When d > 0.1, the critical R(sm) decreases slowly with d and remains almost constant for d ≥ 0.4. In the nonlinear computations for R(m) = 1, periodic convection sets in at a value of R(sm) between ten and eleven times the critical value. For the case of R(m) = 50, an aperiodic oscillation occurs when R(sm) is between four and five times the critical value. For the superposed layer cases d = 1 and 0.5, the convection characteristics are similar to those of thermal convection when R(m) = 0.01. For R(m) = 1, it was found that the onset of salt-finger convection is oscillatory. For R(m) = 50, the nonlinear code failed to obtain satisfactory results.
210

The visible consequences of rising convective streams in the Earth

Amiri Khanmakani, Hosein January 1993 (has links)
No description available.

Page generated in 0.0677 seconds