• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 142
  • 52
  • 24
  • 8
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 294
  • 294
  • 58
  • 58
  • 58
  • 53
  • 52
  • 49
  • 47
  • 45
  • 42
  • 42
  • 40
  • 35
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

An Investigation of the Effectiveness of Polymer Based Materials for Radiation Shielding of Flight Vehicles

Driouche, Bouteina 11 August 2017 (has links)
The Earth’s upper atmosphere is suffused by radiation caused primarily by a bombardment of Cosmic Rays, as a result of which it is hazardous for human beings as well as sensitive electronic equipment on board flight vehicles. A series of ground based as well as airborne experiments were performed using Polylactic Acid (PLA), Acrylonitrile-Butadiene-Styrene (ABS) and High Impact Polystyrene (HIPS), in order to investigate the applicability of polymers that can meet today’s needs for lightweight, multifunctional, and cost efficiency in radiation shielding of electronic equipment. It was found that PLA at 8 mm thickness has an effectiveness of 66% against gamma radiation (i.e., it blocked 66% of the gamma radiation). Therefore, it was decided to proceed with a high altitude balloon experiment with an 8 mm thickness of PLA. The shield was demonstrated to be reasonably effective in attenuating radiation from cosmic rays.
92

Non-thermal Particle Acceleration and Emission from Relativistic Jets

Hao Zhang (15315109) 19 April 2023 (has links)
<p>Astrophysical jets are collimated streams of magnetized plasma launched from compact objects, such as neutron stars or black holes. These jets, powered by the accretion of surrounding gas onto the compact object, can accelerate particles to extreme energies and produce powerful radiation.</p> <p><br></p> <p>In this report, I investigate energy dissipation and particle acceleration in two key regions in jets: (i) external shocks which form where jets interact with ambient gas and (ii) internally in the jet where particles are likely to be energized through the process of magnetic reconnection.</p> <p><br></p> <p>First, I explore inverse Compton scatterings of electrons accelerated at the external shock as a candidate for the high energy emissions from gamma-ray burst afterglows. I consider two sources of seed photons for scattering: synchrotron photons from the blast wave (synchrotron self-Compton) and photon fields external to the shock (external Compton) from the star-forming region in the host galaxy. I develop an analytical model to predict the high-energy spectra from these blasts and reproduce the observed spectra and lightcurves of GRB~190114C. The model implies that inverse Compton can dominate the sub-TeV/TeV emission in this event.</p> <p><br></p> <p>Second, I study the particle acceleration mechanism of magnetic reconnection internally in astrophysical jets. I employ particle-in-cell (PIC) simulations of 3D relativistic magnetic reconnection. My analysis reveals a novel acceleration mechanism that only operates in 3D that results in faster particle acceleration. Unlike in 2D simulations where particles are trapped in the reconnected plasma and stop being accelerated, a fraction of particles in 3D can escape from this region (along the third direction) and be further accelerated. The escaped particles are characterized by a harder energy spectrum with a higher cutoff compared to those found in previous studies. Based on the PIC simulation findings, I build an analytical model for the particle kinetics, which divides particles into two groups --- one undergoing fast energization in the reconnection upstream region and the other residing in the reconnected plasma without energy change. The model predicts a power-law spectra for both groups of particles. PIC simulations reveal a universal magnetization-independent spectra with $dN/d\gamma\propto \gamma^{-2}$ for the overall particle population. The results demonstrate that relativistic reconnection in jets may be a promising mechanism for generating Ultra-High-energy Cosmic Rays. </p>
93

Reconstruction of Xmax and Energy from 3 -- 100 PeV using 5 Years of Data From IceTop and IceCube and its Applications

Medina, Andres Alberto 30 September 2021 (has links)
No description available.
94

First 5 Tower WIMP-search Results from the Cryogenic Dark Matter Search with Improved Understanding of Neutron Backgrounds and Benchmarking

Hennings-Yeomans, Raul January 2009 (has links)
No description available.
95

Design, calibration, and early results of a surface array for detection of ultrahigh energy cosmic rays

Allison, Patrick S. 06 June 2007 (has links)
No description available.
96

Construction of a Comprehensive Picture of Non-thermal Emissions from Various Types of Supernova Remnants / 超新星残骸からの非熱的放射の統一的描像の構築

Yasuda, Haruo 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23706号 / 理博第4796号 / 新制||理||1686(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)講師 LEE Shiu Hang, 教授 嶺重 慎, 准教授 前田 啓一 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
97

Aspects of the modulation of cosmic rays in the outer heliosphere / by Mabedle Donald Ngobeni

Ngobeni, Mabedle Donald January 2006 (has links)
A time-dependent two-dimensional (2D) modulation model including drifts, the solar wind tennination shock (TS) with diffusive shock acceleration and a heliosheath based on the Parker (1965) transport equation is used to study the modulation of galactic cosmic rays (GCRs) and the anomalous component of cosmic rays (ACRs) in the heliosphere. In particular, the latitude dependence of the TS compression ratio and injection efficiency of the ACRs (source strength) based on the hydrodynamic modeling results of Scherer et al. (2006) is used for the first time in a modulation model. The subsequent effects on differential intensities for both GCRs and ACRs are illustrated, comparing them to the values without a latitude dependence for these parameters. It is found that the latitude dependence of these parameters is important and that it enables an improved description of the modulation of ACRs beyond the TS. With this modeling approach (without fitting observations) to the latitude dependence of the two parameters, it is possible to obtain a TS spectrum for ACRs at a polar angle of B = 55" that qualitatively approximates the main features of the Voyager 1 observations. This positive result has to be investigated further. Additionally, it is shown that the enhancement of the cosmic ray intensity just below the cut-off energy found for the ACR at the TS in an A < 0 magnetic polarity cycle in the equatorial plane with the latitude independent scenario, disappears in this region when the latitude dependence of the compression ratio and injection efficiency is assumed. Subsequent effects of these scenarios are illustrated on the global anisotropy vector of both GCRs and ACRs as the main theme of this work. For this purpose the radial and latitudinal gradients for GCRs and ACRs were accurately computed. The radial and latitudinal anisotropy components were then computed as a function of energy, radial distance and polar angle. It is also the first time that the anisotropy vector is comprehensively calculated in such a global approach to cosmic ray modeling in the heliosphere, in particular for ACRs. It is shown that the anisotropy vector inside (up-stream) and outside (down-stream) the TS behaves in a complicated way, so care must be taken in interpreting it. It is found that the latitude dependence of the two mentioned parameters can alter the direction (sign) of the anisotropy vector. Its behaviour beyond the TS is markedly different from inside the TS, mainly because of the slower solar wind velocity, with less dependence on the magnetic polarity cycles. / Thesis (M.Sc. (Physics))--North-West University, Potchefstroom Campus, 2007.
98

Aspects of the modulation of cosmic rays in the outer heliosphere / by Mabedle Donald Ngobeni

Ngobeni, Mabedle Donald January 2006 (has links)
A time-dependent two-dimensional (2D) modulation model including drifts, the solar wind tennination shock (TS) with diffusive shock acceleration and a heliosheath based on the Parker (1965) transport equation is used to study the modulation of galactic cosmic rays (GCRs) and the anomalous component of cosmic rays (ACRs) in the heliosphere. In particular, the latitude dependence of the TS compression ratio and injection efficiency of the ACRs (source strength) based on the hydrodynamic modeling results of Scherer et al. (2006) is used for the first time in a modulation model. The subsequent effects on differential intensities for both GCRs and ACRs are illustrated, comparing them to the values without a latitude dependence for these parameters. It is found that the latitude dependence of these parameters is important and that it enables an improved description of the modulation of ACRs beyond the TS. With this modeling approach (without fitting observations) to the latitude dependence of the two parameters, it is possible to obtain a TS spectrum for ACRs at a polar angle of B = 55" that qualitatively approximates the main features of the Voyager 1 observations. This positive result has to be investigated further. Additionally, it is shown that the enhancement of the cosmic ray intensity just below the cut-off energy found for the ACR at the TS in an A < 0 magnetic polarity cycle in the equatorial plane with the latitude independent scenario, disappears in this region when the latitude dependence of the compression ratio and injection efficiency is assumed. Subsequent effects of these scenarios are illustrated on the global anisotropy vector of both GCRs and ACRs as the main theme of this work. For this purpose the radial and latitudinal gradients for GCRs and ACRs were accurately computed. The radial and latitudinal anisotropy components were then computed as a function of energy, radial distance and polar angle. It is also the first time that the anisotropy vector is comprehensively calculated in such a global approach to cosmic ray modeling in the heliosphere, in particular for ACRs. It is shown that the anisotropy vector inside (up-stream) and outside (down-stream) the TS behaves in a complicated way, so care must be taken in interpreting it. It is found that the latitude dependence of the two mentioned parameters can alter the direction (sign) of the anisotropy vector. Its behaviour beyond the TS is markedly different from inside the TS, mainly because of the slower solar wind velocity, with less dependence on the magnetic polarity cycles. / Thesis (M.Sc. (Physics))--North-West University, Potchefstroom Campus, 2007.
99

Propagação de raios cósmicos extragaláticos / Propagation of the extragalactic cosmic rays

Anjos, Rita de Cássia dos 26 June 2014 (has links)
Recentemente, o Observatório Pierre Auger tem medido espectro de energia de Raios Cósmicos Ultra Energéticos (Ultra High Energy Cosmic Rays - UHECR) (E &gt; 1019 eV) com grande acurácia. No entanto, o estudo de raios cósmicos ultra energéticos na Terra tem uma forte dependência do estudo de sua propagação no Universo. Neste trabalho, abordamos o estudo da propagação de raios cósmicos em diferentes aspectos. Núcleos em alta energia interagem com os campos de radiação no caminho da fonte à Terra. A interação mais importante é a fotodesintegração. Na primeira parte, implementamos de maneira analítica e numérica a solução da razão de fotodesintegração e fizemos uso da solução numérica em um programa de Monte Carlo. Mostramos soluções baseadas na parametrização das seções de choque por uma função Gaussiana e por uma função Lorenztiana. Comparamos nossos resultados com trabalhos prévios da literatura. O seguinte estudo mostrou que sob a hipótese de propagação quase-linear e utilizando várias distribuições de fontes no céu, a latitude do observatório: tem influência no fluxo total medido por um observatório; impõe um limite na capacidade de medida de anisotropia e tem um efeito negligenciável na medida do XMax. No terceiro estudo, um limite superior na integral do fluxo de raios gama em GeV-TeV é usado para obter um limite superior na luminosidade total de UHECR de fontes individuais. A correlação entre o limite superior na integral do fluxo de raios gama e o limite superior na luminosidade total de UHECR é estabelecida através do processo de cascatas de partículas geradas durante a propagação de raios cósmicos nos campos de radiação. / Recently, the Pierre Auger Observatory has measured the energy spectrum of Ultra High Energy Cosmic Rays (UHECR) (E &gt; 1019 eV) with an unprecedented accuracy. However, the study of ultra-high energy cosmic rays at Earth depends on the models used to describe the propagation of the particle in the Universe. In this work, we present a study of propagation of cosmic rays on different aspects. Nucleus at this high energy interacts with the radiation fields on the way from the source to Earth. The most important interaction is the photodisintegration. In the first part, we implemented analytical, numerical and Monte Carlo simulation solutions for the photodisintegration rate. We show solutions based on parameterizations of the cross-section using Gaussian and Lorenztian functions. We compare our results with previous works. The following study shows that under the assumption of quasi-linear propagation and using several sources distributions of sky, the latitude of the observatory: has influence on the total flux measured by an observatory; imposes a limitation on the capability of measuring an anisotropic sky and has a negligible efect on the Xmax measurement. In the thirdy study, an upper limit on the integral flux of GeV-TeV gamma-rays is used to extract the upper limit on the total UHECR luminosity of individual sources. The correlation between upper limit on the integral GeV-TeV gamma-rays flux and upper limit on the UHECR luminosity is established through the cascading process that takes place during propagation of the cosmic-rays in the background radiation fields.
100

Propagação de raios cósmicos extragaláticos / Propagation of the extragalactic cosmic rays

Rita de Cássia dos Anjos 26 June 2014 (has links)
Recentemente, o Observatório Pierre Auger tem medido espectro de energia de Raios Cósmicos Ultra Energéticos (Ultra High Energy Cosmic Rays - UHECR) (E &gt; 1019 eV) com grande acurácia. No entanto, o estudo de raios cósmicos ultra energéticos na Terra tem uma forte dependência do estudo de sua propagação no Universo. Neste trabalho, abordamos o estudo da propagação de raios cósmicos em diferentes aspectos. Núcleos em alta energia interagem com os campos de radiação no caminho da fonte à Terra. A interação mais importante é a fotodesintegração. Na primeira parte, implementamos de maneira analítica e numérica a solução da razão de fotodesintegração e fizemos uso da solução numérica em um programa de Monte Carlo. Mostramos soluções baseadas na parametrização das seções de choque por uma função Gaussiana e por uma função Lorenztiana. Comparamos nossos resultados com trabalhos prévios da literatura. O seguinte estudo mostrou que sob a hipótese de propagação quase-linear e utilizando várias distribuições de fontes no céu, a latitude do observatório: tem influência no fluxo total medido por um observatório; impõe um limite na capacidade de medida de anisotropia e tem um efeito negligenciável na medida do XMax. No terceiro estudo, um limite superior na integral do fluxo de raios gama em GeV-TeV é usado para obter um limite superior na luminosidade total de UHECR de fontes individuais. A correlação entre o limite superior na integral do fluxo de raios gama e o limite superior na luminosidade total de UHECR é estabelecida através do processo de cascatas de partículas geradas durante a propagação de raios cósmicos nos campos de radiação. / Recently, the Pierre Auger Observatory has measured the energy spectrum of Ultra High Energy Cosmic Rays (UHECR) (E &gt; 1019 eV) with an unprecedented accuracy. However, the study of ultra-high energy cosmic rays at Earth depends on the models used to describe the propagation of the particle in the Universe. In this work, we present a study of propagation of cosmic rays on different aspects. Nucleus at this high energy interacts with the radiation fields on the way from the source to Earth. The most important interaction is the photodisintegration. In the first part, we implemented analytical, numerical and Monte Carlo simulation solutions for the photodisintegration rate. We show solutions based on parameterizations of the cross-section using Gaussian and Lorenztian functions. We compare our results with previous works. The following study shows that under the assumption of quasi-linear propagation and using several sources distributions of sky, the latitude of the observatory: has influence on the total flux measured by an observatory; imposes a limitation on the capability of measuring an anisotropic sky and has a negligible efect on the Xmax measurement. In the thirdy study, an upper limit on the integral flux of GeV-TeV gamma-rays is used to extract the upper limit on the total UHECR luminosity of individual sources. The correlation between upper limit on the integral GeV-TeV gamma-rays flux and upper limit on the UHECR luminosity is established through the cascading process that takes place during propagation of the cosmic-rays in the background radiation fields.

Page generated in 0.0401 seconds