Spelling suggestions: "subject:"[een] COULOMB BLOCKADE"" "subject:"[enn] COULOMB BLOCKADE""
1 |
Single electronics in #delta#-doped silicon germaniumPaul, Douglas John January 1993 (has links)
No description available.
|
2 |
Conductance of single electron devices from imaginary-time path integralsTheis, Christoph. Unknown Date (has links) (PDF)
University, Diss., 2004--Freiburg (Breisgau).
|
3 |
Coulomb-Blockade bei Raumtemperatur in selbstorganisierten Arrays von Pt-ClusternKreupl, Franz. Unknown Date (has links) (PDF)
Universiẗat, Diss., 1999--Regensburg. / Erscheinungsjahr an der Haupttitelstelle: 1998.
|
4 |
Dynamische Leistungsverstärkung bei GHz Frequenzen und Speichereigenschaften von nanoelektronischen GaAs/AlGaAs Transistoren / Dynamic power gain at GHz frequencies and memory effects of nanoelectronic GaAs/AlGaAs transistorsSpanheimer, Daniela Cornelia January 2009 (has links) (PDF)
Es wurde gezeigt, dass durch die Vorpositionierung von Quantenpunkten, diese mit einem gezielten Abstand im Bereich von einigen 100 nm zueinander und daher mit einer definierten Dichte in Speicherbauelemente eingebracht werden können. Es wurde bei tiefen Temperaturen wohldefinierte Coulombblockade demonstriert. Durch die Analyse der Coulomb-Rauten war es möglich, auf die Größe und Ladeenergie von Quantenpunkten im Kanal zu schliessen. Es wurde gezeigt, dass vorpositionierte Quantenpunkte sehr gut als Floating Gate eingesetzt werden können. Die Speichereigenschaften dieser Quantenpunkte wurden im Hinblick auf die Hysteresebreite DeltaVth in Abhängigkeit der Kanalbreite, der Drainspannung und der Temperatur untersucht und diskutiert. Hierbei konnte eine deutliche Abhängigkeit der Thresholdspannung von der Kanalbreite der Struktur ermittelt werden. Für Strukturen mit einem breiten Kanal wurde festgestellt, dass der Stromfluss bereits bei negativen Gatespannungen einsetzt, während für schmale Strukturen positive Gatespannungen nötig sind, um einen Ladungstransport hervorzurufen. Zur Bestimmung der Temperaturstabilität der Ladezustände wurde sowohl die Thresholdspannung als auch die Hysteresebreite als Funktion der Probentemperatur im Bereich von 4.2K bis Raumtemperatur bei verschiedenen Drainspannungen bestimmt. Hierbei wurde festgestellt, dass die Hysteresebreite bis zu einer kritischen Temperatur stufenförmig abnimmt und danach wieder leicht ansteigt. Bei der Untersuchung der Threshold- Spannung wurde ein Unterschied Vth,zu und Vth,auf festgestellt. Erstmals konnte ein lateral und vertikal positionierter InAs Quantenpunkt als Speicher für den Betrieb bei Raumtemperatur demonstriert werden. Ferner wurde die Wirkung eines Gate-Leckstromes auf den gemessenen Drain- Strom eines monolithischen Drei-Kontakt-Struktur untersucht und diskutiert. Die untersuchten Proben basieren auf einem neuen Parallel-Design, in welchem das Gate nicht wie üblich zwischen Source und Drain positioniert wurde, sondern in serieller Verbindung mit dem Drain- oder Sourcekontakt, d.h. mit einem zentralen Drain zwischen Source und Gate, gesetzt wurde. Hierdurch konnte eine merkliche Reduzierung des Probeninnenwiderstandes erreicht werde. Zu Beginn wurden zur Charakterisierung der Probe Transportmessungen bei Raumtemperatur durchführt. Hierbei konnte verglichen mit herkömmlichen Quantendrahttranistoren realisiert auf demselbenWafer, zum einen eine deutlich höhere Transconductance durch das parallele Design erreicht werden. Zum anderen zeigte die ermittelte Transconductance nicht den erwarteten linearen Verlauf in Abhängigkeit der Drainspannung, sondern einen quadratischen. Die Messungen zeigten außerdem einen Abfall des Drain-Stromes ab einer kritischen Größe des Gate-Leckstromwertes, welcher auf ein dynamisches Gate, hervorgerufen durch die Ladungsträger aus dem Gate, zurückgeführt wird. Diese zusätzliche virtuelle Kapazität addiert sich in paralleler Anordnung zum geometrischen Gate-Kondensator und verbessert die Transistoreigenschaften. Zum Abschluss der Arbeit wurden Hochfrequenzmessungen zur Ermittlung einer Leistungsverstärkung von Drei-Kontakt-Strukturen bei Raumtemperatur für unterschiedliche Gate- und Drainspannungen durchgeführt. Um die Hochfrequenzeigenschaften der untersuchten Probe zu erhöhen, wurde hierfür ein Design gewählt, in welchem die Goldkontakte zur Kontaktierung sehr nahe an die aktive Region heranragen. Für diese Spannungskombination konnte für eine Frequenz im Gigaherz-Bereich eine positive Spannungsverstärkung > 1 dB gemessen werden. Höhere Spannungen führen zu einem Sättigungswert in der Leistungsverstärkung. Dies wird zurückgeführt auf den maximal zur Verfügung stehenden Strom in der aktiven Region zwischen den nahen Goldkontakten. Zudem wurde eine Lösung vorgestellt, um das fundamentale Problem der Impedanzfehlanpassung für Hochfrequenzmessungen von nanoelektronischen Bauelementen mit einem hohen Innerwiderstand zu lösen. Eine Anpassung der unterschiedlichen Impedanzen zwischen Bauelement und Messapparatur ist unbedingt notwendig, um Reflexionen bei der Übertragung zu vermeiden und somit die Gewinnoptimierung zu erhöhen. Zur Behebung der Fehlanpassung wurde im Rahmen dieser Arbeit ein Impedanz-Anpassungs-Netzwerk auf einer PCB-Platine realisiert, welches mit der Probe verbunden wurde. Die Anpassung wurde durch eingebaute Strichleitungen in das Layout des Anpassungsboards vorgenommen. Durchgeführte Simulationen der Probe in Verbindung mit dem Anpassungs-Netzwerk bestätigten die experimentellen Ergebnisse. Durch die Anpassung konnte der simulierte Reflexionskoeffizient deutlich reduziert werden, bei gleichzeitiger Erhöhung des Transmissionskoeffizienten. Ebenfalls zeigten die Messungen an einer Drei-Kontakt-Struktur mit Anpassungs-Board eine signifikante Verbesserung der Leistungsverstärkung. / Dynamical Charging and Discharging of laterally aligned quantum dot structures We can demonstrate that the direct positioning enables us to embed quantum dots with given periods to each other of only a few 100 nm and therefore with a defined density into the memory-structures. For low temperatures, well defined Coulombblockade can be observed. The analysis of the measured diamond patterns allows the determination of the dimension and the charging energy of the embedded quantum dots in the channel. The memory properties of these quantum dots were analyzed and discussed in terms of the hysteresis width DeltaVth which depends on the channel width, the applied drain voltage and the device temperature. The measurements reveal a dependence of the threshold voltage on the channel width of the structure. For devices with a wide channel the current transport sets in with negative applied gate voltages, in contrast to structures with narrow channels, requiring positive gate voltages to cause a current flow through the channel. To explain these results we assume that in large channels a higher negative voltage is necessary to deplete the charges out of the channel due to the higher charge density. To analyze the temperature stability of the charge states the threshold voltage as well as the hysteresis width is detected as a function of the temperature for different drain voltages in the range of 4.2K up to room temperature. It is determined that the hysteresis width decreases to a critical temperature before it rises again. For the investigation of the threshold voltage a difference between Vth,up and Vth,down is demonstrated. We assume that this difference is caused by the different charging behavior for increasing charge energies. In this work, lateral and vertical positioned InAs quantum dots could be demonstrated as a memory device operated at room temperature for the first time. Improved transistor functionality caused by gate leakage currents in nanoscaled Three Terminal Structures Further we investigate the role of gate leakage on the drain current in a monolithic, unipolar GaAs/AlGaAs heterostructure based on three leaky coupled contacts. Two in-plane barriers, defined by rows of etched holes in a two-dimensional electron gas, separate the leaky gate from the central drain and the drain from the source. Because of this the internal resistance of the structure can be appreciably decreased. It should be noted that the observed differential voltage amplification in the gate leakage regime of the studied structure is by far larger compared to the voltage amplification of any in-plane wire transistor fabricated from the same wafer, which were controlled by two non-leaking in-plane gates. The calculated transconductance increases quadratically and not in a non-linear manner, as expected. A pronounced reduction of the drain current sets in when the gate starts to leak, pointing at a large parallel gate capacitor. We associate the gate-leakage current induced gating with a virtual floating gate induced by the space charge injected from the gate. The space charge can hereby be described by a parallel gate capacitor that can control a low dimensional channel lying nearby. High frequency measurements on Three Terminal Structures High frequency measurements for determination of the power gain in Three Terminal Structures are carried out at room temperature. To improve the high frequency properties of the investigated structures a special design was chosen, where the gold contacts for contacting the sample approach very closely the active switching region. The measurements show that negative gate voltages are much more efficient to the power gain than positive ones. For these voltage combinations a power gain > 1 dB for frequencies in the GHz range is detected, whereas the power gain saturates for higher voltages. This is interpreted in terms of the maximum number of charges in the active region between the gold contacts. Furthermore an answer to the fundamental obstacle of the impedance mismatch for high frequency measurements on nanoelectronic structures with high internal resistance is given. Such a matching between the device and the measurement setup is necessary to reduce signal reflections and therefore increase the gain. To match the impedances, an impedancematching- network on a PCB-plate (printed circuit board) via integrated stubs was realized. Simulation data of the sample in connection with the matching-network is in very good agreement with the experimental data. Using the network reduces the simulated reflection coefficient and simultaneously raises the transmission coefficient. The measurements also show a significant improvement of the power gain behaviour.
|
5 |
Self-Assembly of Nanoparticles at Liquid-Liquid InterfacesDu, Kan 01 September 2010 (has links)
In this thesis, we studied the self-assembly of nanoparticles at liquid metal-water interfaces and oil-water interfaces. We demonstrated a simple approach to form nanostructured electronic devices by self-assembly of nanoparticles at liquid metal surfaces. In this approach, two liquid-metal droplets, which were coated with a monolayer of ligand-stabilized nanoparticles, were brought into contact. They did not coalesce but instead remained separated by the nanoparticles assembled at the interface. Devices formed by this method showed electron transport between droplets that was characteristic of the Coulomb blockade, where current was suppressed below a tunable threshold voltage because of the energy of charging individual nanoparticles. Further studies of this approach demonstrated the potential of interfacial assembly in fabricating microscopic electronic devices over a large area in a cost-effective and time-efficient fashion. Micrometer-scale Ga droplets coated with nanoparticles were fabricated using ultrasonication and then deposited on patterned substrates to form microscopic devices. I-V measurements showed Coulomb blockade effect in the devices containing more than one nanoparticle junction. The measured threshold voltages increased with number of junctions as expected for devices arranged in series. We also studied experimentally the energy of adsorption of nanoparticles and microparticles at the oil-water and Ga-water interfaces by monitoring the decrease of interfacial tension as the particles bind. For citrate-stabilized gold nanoparticles assembling on a droplet of octafluoropentyl acrylate, we found adsorption energy =-5.1 kBT for particle radius R = 2.5 nm, and adsorption energy scales R^2 for larger sizes. Gold nanoparticles with (1-mercaptoundec-11-yl) tetra(ethylene glycol) ligand had a much larger binding energy (-60.4 kBT) and an energy barrier against adsorption. For polystyrene spheres with R = 1.05 micrometer, we found adsorption energy =-0.9*10^6 kBT. We also found that the binding energy depended on the composition of the oil phase and could be tuned by the salt concentration of the nanoparticle suspension. At Ga-water interfaces, we found that adsorption energy of Au-cit and Au-TEG nanoparticles were much larger. We have also studied desorption of polystyrene microparticles from oil-water interfaces by changing experimental conditions, including addition of nanoparticles, cross-linking ligand molecules or in response to chemical interactions between the particles and the oil. We found that microparticles can desorb even though the adsorption energy is large. We also found that the desorbed particle formed a surprising `tail'-like structure.
|
6 |
Thermoelectric Properties of Few-Electron Quantum Dots / Thermoelektrische Eigenschaften von QuantenpunktenScheibner, Ralf January 2007 (has links) (PDF)
This thesis presents an experimental study of the thermoelectrical properties of semiconductor quantum dots (QD). The measurements give information about the interplay between first order tunneling and macroscopic quantum tunneling transport effects in the presence of thermal gradients by the direct comparison of the thermoelectric response and the energy spectrum of the QD. The aim of the thesis is to contribute to the understanding of the charge and spin transport in few-electron quantum dots with respect to potential applications in future quantum computing devices. It also gives new insight into the field of low temperature thermoelectricity. The investigated QDs were defined electrostatically in a two dimensional electron gas (2DEG) formed with a GaAs/(Al,Ga)As heterostructure by means of metallic gate electrodes on top of the heterostructure. Negative voltages with respect to the potential of the 2DEG applied to the gate electrodes were used to deplete the electron gas below them and to form an isolated island of electron gas in the 2DEG which contains a few ten electrons. This QD was electrically connected to the 2DEG via two tunneling barriers. A special electron heating technique was used to create a temperature difference between the two connecting reservoirs across the QD. The resulting thermoelectric voltage was used to study the charge and spin transport processes with respect to the discrete energy spectrum and the magnetic properties of the QD. Such a two dimensional island usually exhibits a discrete energy spectrum, which is comparable to that of atoms. At temperatures below a few degrees Kelvin, the electrostatic charging energy of the QDs exceeds the thermal activation energy of the electrons in the leads, and the transport of electrons through the QD is dominated by electron-electron interaction effects. The measurements clarify the overall line shape of thermopower oscillations and the observed fine structure as well as additional spin effects in the thermoelectrical transport. The observations demonstrate that it is possible to control and optimize the strength and direction of the electronic heat flow on the scale of a single impurity and create spin-correlated thermoelectric transport in nanostructures, where the experimenter has a close control of the exact transport conditions. The results support the assumption that the performance of thermoelectric devices can be enhanced by the adjustment of the QD energy levels and by exploiting the properties of the spin-correlated charge transport via localized, spin-degenerate impurity states. Within this context, spin entropy has been identified as a driving force for the thermoelectric transport in the spin-correlated transport regime in addition to the kinetic contributions. Fundamental considerations, which are based on simple model assumptions, suggest that spin entropy plays an important role in the presence of charge valence fluctuations in the QD. The presented model gives an adequate starting point for future quantitative analysis of the thermoelectricity in the spin-correlated transport regime. These future studies might cover the physics in the limit of single electron QDs or the physics of more complex structures such as QD molecules as well as QD chains. In particular, it should be noted that the experimental investigations of the thermopower of few-electron QDs address questions concerning the entropy transport and entropy production with respect to single-bit information processing operations. These questions are of fundamental physical interest due to their close connection to the problem of minimal energy requirements in communication, and thus ultimately to the so called "Maxwell's demon" with respect to the second law of thermodynamics. / Diese Dissertation präsentiert eine experimentelle Studie über die thermoelektrischen Eigenschaften von Halbleiterquantenpunkten. Das thermoelektrische Verhalten der Quantenpunkte wird unter besonderer Berücksichtigung ihrer jeweiligen Energiespektren und magnetischen bzw Spin-Eigenschaften diskutiert. Die durchgeführten Messungen geben Aufschluss über das Zusammenspiel von Einzelelektronentunnelprozessen erster und höherer Ordnung unter dem Einfluss thermischer Gradienten. Somit trägt diese Dissertation zum Verständnis des Ladungs- und Spintransports in potentiellen, zukünftigen Bausteinen für die Quanteninformationsverarbeitung bei und ermöglicht neue Einblicke in das Themengebiet der Thermoelektrizität bei sehr tiefen Temperaturen. Die untersuchten Quantenpunkte wurden in einem zweidimensionalen Elektronengas (2DEG) mittels nanostrukturierter, metallischer "gates" erzeugt, die auf der Oberfläche einer GaAs/AlGaAs Heterostrukturoberfläche aufgebracht wurden. Durch das Anlegen negativer Spannungen in Bezug auf das Potential des 2DEGs, wurde das Elektronengas unter den gates verdrängt, so dass eine isolierte Insel entstand, die bis zu ca. 30 Elektronen zählte. Zwei Tunnelbarrieren dienten als elektrische Verbindung dieses Quantenpunkts zu den Zuleitungen. Unter Verwendung einer speziellen Stromheizungstechnik wurde eine Temperaturdifferenz zwischen den zwei Zuleitungsreservoirs über dem Quantenpunkt erzeugt. Die Untersuchung von Ladungs- und Spintransportprozessen erfolgte über den direkten Vergleich der resultierenden thermoelektrischen Spannung mit den jeweiligen Energiespektren der Quantenpunkte. Im Allgemeinen weist eine solche zweidimensionale Insel ein diskretes Energiespektrum auf, das vergleichbar mit dem einzelner Atome ist. Unterhalb einer Temperatur von wenigen Grad Kelvin, ist die elektrostatische Aufladungsenergie des Quantenpunkts größer als die thermische Anregungsenergie der Elektronen in den Zuleitungen. Als Folge bestimmen Elektron-Elektron-Wechselwirkungseffekte den Transport von Elektronen durch den Quantenpunkt. Die durchgeführten Messungen erklären den Verlauf der Thermokraft als Funktion des Quantenpunktpotentials einschließlich der aufgeprägten Feinstruktur sowie zusätzliche thermoelektrische Effekte, die von den Spin-Eigenschaften des Quantenpunkts hervorgerufen werden. Die Beobachtungen beweisen, dass es möglich ist Stärke und Richtung des elektronischen Wärmeflusses auf der Größenskala einzelner Verunreinigungen zu kontrollieren und gegebenenfalls zu optimieren sowie Spin-korrelierten thermoelektrischen Transport in künstlich hergestellten Nanostrukturen zu verwirklichen, welche eine gezielte Kontrolle der Transportbedingungen erlauben. Die Ergebnisse untermauern die Annahmen einer möglichen Verbesserung der Effizienz thermoelektrisch aktiver Materialien durch die Anpassung der energetischen Lage entsprechender Quantenpunktzustände und durch die Ausnutzung der thermoelektrischen Effekte im Spin-korrelierten Ladungstransport durch energetisch entartete, lokalisierte Zustände. In diesem Rahmen wurde erläutert, dass Spinentropie neben den kinetischen Beiträgen eine weitere treibende Kraft des thermoelektrischen Transports durch Quantenpunkte darstellt. Grundlegende Überlegungen, die auf einfachen Modellannahmen beruhen, lassen erwarten, dass die Beiträge der Spinentropie zum thermoelektischen Transport bei vorhandenen Fluktuationen der Anzahl der Ladungen auf dem Quantenpunkt eine signifikante Rolle spielen. Das vorgestellte Modell bietet hierzu einen geeigneten Ausgangspunkt für weitere quantitative Analysen der Thermoelektrizität im Spin-korrelierten Transportregime. Insbesondere sei darauf hingewiesen, dass die experimentelle Untersuchung der Thermokraft von Quantenpunktstrukturen, wie sie hier verwendet wurden, den Entropietransport und die Entropieerzeugung in Bezug zu Ein-Bit-Rechenoperationen setzen. Fragestellungen dieser Art sind von fundamentalem physikalischen Interesse aufgrund ihrer engen Verknüpfung mit der Frage nach dem minimalen Energieaufwand, der eine Kommunikation ermöglicht. Dieses Problem wird häufig mittels des so genannten Maxwell'schen Dämon diskutiert und hinterfragt in ihrem Ursprung den zweiten Hauptsatz der Thermodynamik.
|
7 |
Electron-electron interaction and confinement in the integer quantum Hall effectStruck, Alexander. Unknown Date (has links) (PDF)
University, Diss., 2005--Hamburg.
|
8 |
Le graphène comme barrière tunnel : propriétés d'injection de charges et de spin / Graphene as tunnel barrier : charge and spin injection propertiesGodel, Florian 08 December 2015 (has links)
Mes travaux de thèse portent sur la fabrication et la caractérisation électrique et magnétique de jonctions tunnel à base de graphène. C’est autour de l’idée d’apporter une meilleur compréhension des mécanismes d’injection et de détection d’un courant de charge et de spin aux interfaces graphène/ferromagnétique que s’articule ce manuscrit. Après avoir démontré qu’il est possible de faire croître de manière épitaxiée une barrière tunnel de MgO sur graphène, nous avons étudié les mécanismes de transport dépendant en spin dans des jonctions verticales de Co/MgO/Gr/Ni. Nous avons mis en évidence l’interaction du graphène avec l’électrode de nickel à travers les inversions de signe de la magnétorésistance. Celles-ci peuvent être expliquées à l’aide d’un modèle de canaux de conduction assistés par phonons. Enfin du blocage de Coulomb reproductible a été mesuré dans des amas d’aluminium potentiellement mono disperses et auto assemblés sur graphène. / My PhD thesis deals with the fabrication and the electric and magnetic characterizations of magnetic tunnel junctions based on graphene. The interaction of graphene with its close environment opens new possibilities for spintronics applications. The manuscript is focused on the improvement of the understanding of mechanisms involved in the injection and detection of a polarized spin current at the graphene/ferromagnetic interfaces. We show that it is possible to grow epitaxially MgO tunnel barrier on graphene. We study the spin transport mechanisms in vertical junctions of Co/MgO/Gr/Ni. The interaction of graphene with nickel electrode is probed through tunnel magnetoresistance inversions which can be explained by the activation of phonon assisted conduction channel. We also measure in vertical and lateral devices based on alumina barrier on graphene, reproducible Coulomb blockade processes linked to the presence of monodisperse aluminum clusters at the graphene edge.
|
9 |
Tunable All Electric Spin PolarizerBhandari, Nikhil K. 20 October 2014 (has links)
No description available.
|
10 |
Electronic Interactions in Semiconductor Quantum Dots and Quantum Point ContactsLiu, Tai-Min 23 September 2011 (has links)
No description available.
|
Page generated in 0.1267 seconds