• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 7
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 72
  • 26
  • 20
  • 12
  • 12
  • 11
  • 11
  • 11
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Metamaterial-Inspired CMOS Tunable Microwave Integrated Circuits For Steerable Antenna Arrays

Abdalla, Mohamed 23 September 2009 (has links)
This thesis presents the design of radio-frequency (RF) tunable active inductors (TAIs) with independent inductance (L) and quality factor (Q) tuning capability, and their application in the design of RF tunable phase shifters and directional couplers for wireless transceivers. The independent L and Q tuning is achieved using a modided gyrator-C architecture with an additional feedback element. A general framework is developed for this Q- enhancement technique making it applicable to any gyrator-C based TAI. The design of a 1.5V, grounded, 0.13um CMOS TAI is presented. The proposed circuit achieves a 0.8nH-11.7nH tuning range at 2GHz, with a peak-Q in excess of 100. Furthermore, printed and integrated versions of tunable positive/negative refractive index (PRI /NRI) phase shifters, are presented in this thesis. The printed phase shifters are comprised of a microstrip transmission-line (TL) loaded with varactors and TAIs, which, when tuned together, extends the phase tuning range and produces a low return loss. In contrast, the integrated phase shifters utilize lumped L-C sections in place of the TLs, which allows for a single MMIC implementation. Detailed experimental results are presented in the thesis. As an example, the printed design achieves a phase of -40 to +34 degrees at 2.5GHz. As another application for the TAI, a reconfigurable CMOS directional coupler is presented in this thesis. The proposed coupler allows electronic control over the coupling coefficient, and the operating frequency while insuring a low return loss and high isolation. Moreover, it allows switching between forward and backward operation. These features, combined together, would allow using the coupler as a duplexer to connect a transmitter and a receiver to a single antenna. Finally, a planar electronically steerable patch array is presented. The 4-element array uses the tunable PRI/NRI phase shifters to center its radiation about the broadside direction. This also minimizes the main beam squinting across the operating bandwidth. The feed network of the array uses impedance transformers, which allow identical interstage phase shifters. The proposed antenna array is capable of continuously steering its main beam from -27 to +22 degrees of the broadside direction with a gain of 8.4dBi at 2.4GHz.
22

Design of Tunable/Reconfigurable and Compact Microwave Devices

Zhou, Mi 05 1900 (has links)
With the rapid development of the modern technology, radio frequency and microwave systems are playing more and more important roles. Since the time the first microwave device was invented, they have been leading not only the military but also our daily life to a new era. In order to make the devices have more practical applications, more and more strict requirements have been imposed. For example, good adaptability, reduced cost and shrank size are highly required. In this thesis, three devices are designed based on this requirement. At first, a symmetric four-port microwave varactor based 90-degree directional coupler with tunable coupling ratios and reconfigurable responses is presented. The proposed coupler is designed based on the modified structure of a crossover, where varactors are loaded. Then, a novel reconfigurable 3-dB directional coupler is presented. Varactors and inductors are loaded to the device to realize the reconfigurable performance. By adjusting the voltage applied to the varactors, the proposed coupler can be reconfigured from a branch-line coupler (90-degree coupler) to a rat-race coupler (180 degree coupler) and vice versa. At last, two types (Type-I and Type-II) of microwave baluns with generalized structures are presented. Different from the conventional transmission-line-based baluns where λ/2 transmission lines or λ/4 coupled lines are used, the proposed baluns are constructed by transmission lines with arbitrary electrical lengths.
23

Dual-wavelength fiber laser above 2 mu m based on cascaded single mode-multimode-single mode structures

Fu, Shijie, Shi, Guannan, Sheng, Quan, Shi, Wei, Yao, Jianquan, Zhu, Xiushan, Peyghambarian, N. 06 1900 (has links)
A stable dual-wavelength Tm:Ho co-doped fiber laser operating above 2 mu m based on cascaded single mode-multimode-single mode (SMS) all-fiber structures has been proposed and experimentally demonstrated for the first time.
24

SESAM Q-switched fiber laser at 1.2 mu m

Wang, Yuchen, Zhu, Xiushan, Zong, Jie, Wiersma, Kort, Chavez-Pirson, Arturo, Norwood, Robert A., Peyghambarian, N. 06 1900 (has links)
Q-switched operation of a holmium-doped fluoride fiber laser at 1.2 mu m wavelength induced by a semiconductor saturable absorber mirror (SESAM) is reported. 650 ns pulses with 0.13 mu J pulse energy at a repetition rate of 260 kHz were obtained.
25

LIGA-micromachined tight microwave couplers

Kachayev, Anton 19 December 2003
There are a significant number of microwave applications, including active antenna arrays, wireless communication systems, navigational applications, etc., where improvement of such qualities as manufacturing costs, size, weight, power consumption, etc. is still on the agenda of todays RF design. In order to meet these requirements, new technologies must be actively involved in fabrication of RF components with improved characteristics. One of such fabrication technologies is called LIGA, used before primarily in fluidics, photonics, bioengineering, and micromechanics, and only recently receiving growing attention in RF component fabrication. One of the RF components suffering limitations in performance due to limitations in fabrication capabilities is the compact single metal layer (SML) coupled-line 3-dB coupler, also called hybrid, required in some applications thanks to its ability to divide power equally and electrically isolate the output from the input. In todays practical edge-coupled SML coupler designs, the level of coupling is limited by the capabilities of the photolithographic process to print the coupled lines close enough for tight coupling and it is usually no tighter that 8 dB. A promising way to overcome this limitation is increasing the area of metallic interface of the coupled lines, thus increasing the mutual capacitance of the lines, and inherently the coupling between them. This should be preferably done with keeping the coupler compact with respect to the footprint area, which is attained by making taller conductors, i.e. employing the third dimension. In contrast with previously used RF component fabrication processes, LIGA is the technology that allows the designer to explore the third dimension and build tall conductors while being also able to use small features. When the two-dimensional edge-coupled SML couplers are extended into the three-dimensional structures, they rather become the side-coupled SML couplers. Tall-conductor coupled lines have been characterized in this work to reveal their dependence on their geometry and a 3-dB SML coupler with tall conductors has been developed and fabricated using LIGA at the Institute for Microstructure Technology (IMT), Karlsruhe, Germany. The simulation and measurement results demonstrate the potentially superior performance of LIGA couplers, and the promising capabilities of LIGA for fabrication of RF microstructures.
26

LIGA-micromachined tight microwave couplers

Kachayev, Anton 19 December 2003 (has links)
There are a significant number of microwave applications, including active antenna arrays, wireless communication systems, navigational applications, etc., where improvement of such qualities as manufacturing costs, size, weight, power consumption, etc. is still on the agenda of todays RF design. In order to meet these requirements, new technologies must be actively involved in fabrication of RF components with improved characteristics. One of such fabrication technologies is called LIGA, used before primarily in fluidics, photonics, bioengineering, and micromechanics, and only recently receiving growing attention in RF component fabrication. One of the RF components suffering limitations in performance due to limitations in fabrication capabilities is the compact single metal layer (SML) coupled-line 3-dB coupler, also called hybrid, required in some applications thanks to its ability to divide power equally and electrically isolate the output from the input. In todays practical edge-coupled SML coupler designs, the level of coupling is limited by the capabilities of the photolithographic process to print the coupled lines close enough for tight coupling and it is usually no tighter that 8 dB. A promising way to overcome this limitation is increasing the area of metallic interface of the coupled lines, thus increasing the mutual capacitance of the lines, and inherently the coupling between them. This should be preferably done with keeping the coupler compact with respect to the footprint area, which is attained by making taller conductors, i.e. employing the third dimension. In contrast with previously used RF component fabrication processes, LIGA is the technology that allows the designer to explore the third dimension and build tall conductors while being also able to use small features. When the two-dimensional edge-coupled SML couplers are extended into the three-dimensional structures, they rather become the side-coupled SML couplers. Tall-conductor coupled lines have been characterized in this work to reveal their dependence on their geometry and a 3-dB SML coupler with tall conductors has been developed and fabricated using LIGA at the Institute for Microstructure Technology (IMT), Karlsruhe, Germany. The simulation and measurement results demonstrate the potentially superior performance of LIGA couplers, and the promising capabilities of LIGA for fabrication of RF microstructures.
27

The Study of Coupling Efficiency and Application in Polymer Optical Fiber

Chen, Pao-Chuan 07 February 2011 (has links)
The effects of coupling parameters of active-passive and passive-passive coupling components on the coupling efficiency and signal mixed proportion for polymer optical fiber (POF) communication are investigated. A high sensitivity and easy fabricated POF displacement sensor is proposed by using cycling bending POF. Also, light sources for both Laser diode (LD) and light emitting diode (LED) are employed in this study. Experimental approaches and numerical analysis of rays tracing method and finite element method are performed to investigate the effects of coupling scheme and bent deformation on the optical power attenuation. Experimental results also illustrate the feasibility of using numerical analysis in coupling components and POF displacement sensor design. The effect of V-grooved array¡¦s POF on the coupling efficiency and signal mixed proportion are presented in active-passive components. The results indicate that the effect of the V-groove¡¦s shape and size on the coupling efficiency is very significant for all designed parameters of V-grooved array¡¦s POF. Compared with the parallel V-grooved array, the skew V-grooved array reduces the length of the coupling component and increases the output power between light source and POF. In the Y-branch POF coupler for passive-passive components, both the excess loss and the output power ratio of the Y-branch couplers are very sensitive to the couple angle, the coupling distance and the refractive index of the filling medium between the emitting-end and receiving-end of fibers. The results also show that the proposed model can be used to analyze the coupling efficiencies in the asymmetrical Y-branch or axial symmetrical couplers with acceptable accuracy. In the POF displacement sensor using by cycling bending loss, the results show that the effect of roller¡¦s number, interval and wavelength on light power attenuation is very significant. Based on the experimental data, a linear equation is derived to estimate the relationship between the power loss and the relative displacement. The difference between the estimated results and the experimental results is less than 8%.
28

Arsenic Trisulfide on Lithium Niobate Devices for Infrared Integrated Optics

Xia, Xin 2011 May 1900 (has links)
Arsenic trisulfide (As₂S₃) waveguide devices on lithium niobate substrates (LiNbO₃) provide a set of compact and versatile means for guiding and manipulating optical modes in infrared integrated optical circuits, including the integrated trace gas detection system. As a member of the chalcogenide glass family, As₂S₃ has many properties superior to other materials, such as high transparency up to 10 [mu]m, large refractive index and high nonlinear coefficient. At the wavelength of 4.8[mu]m, low-loss As₂S₃ waveguides are achieved: The propagation loss is 0.33 dB/cm; the coupling efficiency is estimated to be 81 %; and less than 3 dB loss is measured for a 90-degree bent waveguide of 250 [mu]m bending radius. They offer an ideal solution to the optical interconnection -- the fundamental element of an optical circuit. LiNbO₃ is a birefringent crystal that has long been studied as the substrate material. Titanium diffused waveguides in lithium niobate substrate (Ti: LiNbO₃) have excellent electro-optical properties, based on which, on-chip polarization converters are demonstrated. New benefits can be obtained by integrating As₂S₃ and Ti: LiNbO₃ to form a hybrid waveguide, which benefits from the high index contrast of As₂S₃ and the electro-optical properties of Ti: LiNbO₃ as well as its easy connection with commercial single mode fibers. For hybrid waveguides, the mode coupling is key. A taper coupler is preferred owing to its simplicity in design and fabrication. Although preliminary experiments have shown the feasibility of such integration, the underlying mechanism is not well understood and guidelines for design are lacking. Therefore, a simulation method is first developed and then applied to the taper coupler design. Devices based on taper couplers are then fabricated and characterized. The study reveals that in the presence of mode beating, it is not necessarily the longer taper that is the better coupling. There exists an optimum length for a taper with fixed width variation. A two-stage taper design can largely reduce the total length, e. g. by 64%, while keeping the coupling efficiency above 90%. According to the frequency domain analysis, these practical taper couplers work for a wavelength range instead of a single wavelength.
29

High efficiency devices based on slow light in photonic crystals

Askari, Murtaza 30 March 2011 (has links)
Photonic crystals have allowed unprecedented control of light and have allowed bringing new functionalities on chip. Photonic crystal waveguides (PCWs), which are linear defects in a photonic crystal, have unique features that distinguish these waveguides from other waveguides. The unique features include very large dispersion, existence of slow light, and the possibility of tailoring the dispersion properties for guiding light. In my research, I have overcome some of the challenges in using slow light in PCWs. In this work, I have demonstrated (i) high efficiency coupling of light into slow group velocity modes of a PCW, (ii) large bandwidth high transmission and low dispersion bends in PCWs, (iii) accurate modeling of pulse propagation in PCWs, (iv) high efficiency absorbing boundary conditions for dispersive slow group velocity modes of PCWs. To demonstrate the utility of slow light in designing high efficiency devices, I have demonstrated refractive index sensors using slow light in PCWs. In the end, a few high efficiency devices based on slow light in PCWs are mentioned. The remaining issues in the widespread use of PCW are also discussed in the last chapter.
30

Towards two dimensional optical beam steering with silicon nanomembrane-based optical phased arrays

Kwong, David Nien 18 October 2013 (has links)
Silicon based on-chip optical phased arrays are an enabling technology to achieving agile and compact large angle beam steering. In this work, a single layer array is presented, and approaches to multilayer 3D photonic integration for achieving a 2D array are also discussed. Finally, two dimensional optical beam steering is achieved using both thermo-optic and wavelength tuning. Various structures are considered as an alternative to the conventionally used shallow etched surface gratings to achieve narrow beam widths in the far field along with low switching power. The corrugated waveguide interspersed with 2D photonic crystal for crosstalk suppression is presented as a novel structure for coupling to free space that can provide lithographically defined index contrast in a single fabrication step, along with the smallest beam widths presented to date, at 0.25°. In addition, a polysilicon overlay with an oxide etch stop layer on top of a silicon waveguide is also presented as a grating coupler that achieves narrow far field beam widths. With this structure, two dimensional steering of 20° X 15° is demonstrated with a 16 element optical phased array, with a beam width of 1.2° X 0.4° and maximum power consumption of 20mW per channel. / text

Page generated in 0.0529 seconds