Spelling suggestions: "subject:"[een] DATA ENVELOPMENT ANALYSIS"" "subject:"[enn] DATA ENVELOPMENT ANALYSIS""
221 |
Benchmarking IT service regions / Victoria G. MadisaMadisa, Victoria Garebangwe January 2008 (has links)
Productivity and efficiency are the tools used in managing performance. This study researches and implements best practices that lead to best performance. A customer quality defined standard has to be created by benchmarking the Information Technology Service Regions which may be used to help decision-makers or management make informed decisions about (1) the effectiveness of service systems, (2) managing the performance of Information Technology Service Regions. Waiting lines or queues are an everyday occurrence and may take the form of customers waiting in a restaurant to be serviced or telephone calls waiting to be answered. The model of waiting lines is used to help managers evaluate the effectiveness of service systems. It determines precisely the optimal number of employees that must work at the centralised service desk. A Data Envelopment Analysis (DEA) methodology is used as a benchmarking tool to locate a frontier which is then used to evaluate the efficiency of each of the organizational units responsible for observed output and input quantities. The inefficient units can learn from the best practice frontier situated along the frontier line. / Thesis (M.Sc. (Computer Science))--North-West University, Vaal Triangle Campus, 2009.
|
222 |
Developing A New Method In Efficiency Measurement ProblemsErdem, Omer 01 January 2013 (has links) (PDF)
Data Envelopment Analysis (DEA) is a powerful technique for relatively efficiency measurement and it is intensively used in different kind of disciplines but this technique has some drawbacks. In the conventional DEA technique, total number of inputs and outputs is determined by the number of evaluated firms. Therefore, this powerful efficiency measurement technique cannot be employed for limited number firm problems. DEA uses realized data so it can be used for objective evaluations. However, in some Occupational Health and Safety (OHS) and mining cases, subjective evaluation is also very important so it should be included in DEA analyses. To get rid of these drawbacks, a new technique is developed with integration of DEA and Analytical Hierarchy Process (AHP) and it is named as AHP.DEA Method. The developed method creates an opportunity using more inputs and outputs in the relatively efficiency measurement for limited number firm cases. Therefore, reliability of the estimation is increased with increasing the number of inputs and outputs in the estimations. The AHP.DEA technique also integrates both subjective opinion of experts and objective evaluation. Combination of them can give more consistent results when compared only subjective or objective evaluation methods. After the application of AHP.DEA method in mining and OHS industry, managers of mining companies can compare their organizations with the competitors or their branches and they can identify strengths and weakness of them. Therefore, quantity and quality of output may be increased while number of accidents is decreased and also new opportunities can be identified to upgrade current operations.
|
223 |
Data Envelopment Analysis And Malmquist Total Factor Productivity (tfp) Index: An Application To Turkish Automotive IndustryKaraduman, Alper 01 September 2006 (has links) (PDF)
This thesis shows how the relative efficiency of automotive companies can be evaluated and how the changes in productivity of these companies by time can be observed. There are 17 companies in the analysis which are the main automotive manufacturers of Turkish automotive industry. A method called stepwise approach is used to determine the input and output factors. The two input variables used are the company&rsquo / s Payment for Raw Materials and Components and Payment for Wages and Insurances of Employees / the three output variables are Domestic Sales, Exports and Capacity Usage. The panel data that covers the time period between years 2001 and 2005 is obtained from OSD (Automotive Manufacturers Association).
The efficiency analysis is performed according to basic Data Envelopment Analysis (DEA) models which are Charnes, Cooper and Rhodes (CCR) models and Banker, Charnes and Cooper (BCC) models. The software LINGO 10 is used for solving the linear programming models. After finding the overall efficiency, technical efficiency and scale efficiency of each company for each year, the changes in the efficiencies are analyzed by using Malmquist Total Factor Productivity (TFP) Index.
The results are illustrated by the help of many tables and graphs for better understanding. When the results in tables and graphs are analyzed, the negative effect of 2001 economic crisis on automotive industry can be observed. Besides, it is seen that the efficiency changes by time show variance from company to company because they produce 7 types of vehicles and there are important differences between them such as production technology, market, demand, etc.
|
224 |
noneLin, Yi-shih 12 February 2009 (has links)
After our country joins WTO, will face the strong capital competition pressure of the international large-scale financial institution, and after foreign businessman's bank has grand capital, the industry manages completely dark, in the face of so strong impact country the financial market fluctuates and aggravates, has increased the operation pressure of the domestic banking, too. How to transform this pressure into helping hand, utilize aquistion and merger to consider complementarily , lower costs then improve the competitiveness, it is really the question which the banking of Taiwan needs to face at present.
Domestic aquistion and merger case or makes up the financial domain that the financial holding company has already affected 14 financial holding companies in Taiwan to reform with the operation pattern jointly at present, but these financial holding companies can reach the value expected and comprehensive result which is greater than two of one plus one (Synergy). The goal needs checking and tests directly.
It does not belong to the financial holding company at home to spy on put the independent bank, in case of financial market saturation, the profit shrinks, the income reduces by a wide margin, the quality of the assets is not good, so that is it put rate is it wait for numerous unfavourable factor to remain high to exceed, how face assets huge financial holding company lay big bank create life their extremely, whether it is influenced that purpose calls it and manages the performance; Establish financial holding company purpose is it can reach category economy and purpose of the large-scale production to call separately. Purpose of this research, focus on wanting to untie it under the trend of the international finance, can really improve the bank and manage the performance and business efficiency of independent bank to establish the financial holding company under the double pressure of the domestic trouble and foreign invasion and really not so good as finance holding company bank put.
Because of above-mentioned backgrounds and motives, so this text hope book probe into by document, materials collect and utilize materials not to make analytic approach of holding in place with a net(Data Envelopment Analysis, DEA), displaying the result of study, it is by offering competent authorities or the financial holding company policymaker to the government and wanting to set up some reference suggestions of bank of the financial holding company.
|
225 |
Investigating the Impact of Corporate IT Investment Strategy on Business Performance Using an Intellectual Capital FrameworkLiao, Yi-Wen 20 January 2010 (has links)
In recent years, companies are facing fierce competition and fast advancement of information technology (IT); thus, how to enhance corporate performance and obtain competitive advantage through IT investment in this dynamic environment has become an important issue for academia and businesses. Investigating the impact of corporate IT investment strategy on business performance need an effective performance measurement tool that help organization on the correct objective. We suggested that evaluate business performance through human development, customer management and benchmark management could improve the shortcomings of traditional evaluation tools. This paper referred intellectual capital and included a review of the latest literature on performance measurement and consolidated these findings, examining the interrelationships and the interaction effects among intellectual capital components and organizational performance.
Based on intellectual capital and complementary assets theory, we proposed a model with regard to how IT investment strategy impact to business performance. This paper used data envelopment analysis comparing the efficiency of IT investment in information-intensive service industries and used path analysis investigating the relationship of measurement indicators; these analysis is used as the basis of research model of this paper. Since there is time delay in the transfers from IT investment to the market performance, the impact of IT investment on market performance is a problem involving dynamic complexity. Thus, from the perspective of long-term, non-linear, closed-loop causality, this study developed a computerized system dynamics model to analyze the dynamic relationships between corporate IT investment strategy and business performance in information-intensive service industries. The results of this study provided several important implications for IT investment management research and practice. The paper helps managers understand better the dynamic interrelationships in organization design and, in particular, the interrelationships between an organization¡¦s profitability (both short-term and long-term) and investment in human competence, internal process and innovation and relationship building measures with customers. The proposed system dynamics model also provided IT managers with a useful decision support tool for evaluating different IT investment strategies.
|
226 |
Συνδυασμός της περιβάλλουσας ανάλυσης δεδομένων με τη μεθοδολογία QFD στον σχεδιασμό υπηρεσιών / The combination of Data Envelopment Analysis (DEA) and Quality Function Deployment (QFD) to design servicesΤάτση, Αμαλία 03 April 2015 (has links)
Η παρούσα διπλωματική εργασία εκπονήθηκε στα πλαίσια του μεταπτυχιακού προγράμματος MBA «Νέες αρχές Διοίκησης Επιχειρήσεων» του τμήματος Διοίκησης Επιχειρήσεων του Πανεπιστημίου Πατρών, κατά το έτος 2013.
Αντικείμενο της εργασίας είναι η παρουσίαση μιας μεθοδολογίας που μπορεί να αξιοποιηθεί για τον σχεδιασμό καλύτερων υπηρεσιών. Η εφαρμογή πραγματοποιείται για την διερεύνηση της αποδοτικότητας των υπηρεσιών μιας τράπεζας. Για τον σκοπό αυτό χρησιμοποιήθηκαν προκαθορισμένα κριτήρια (πρόταση από φίλο, φήμη, έξοδα λογαριασμών, τοποθεσία, επιτόκια δανείων, πάρκινγκ, πιστωτική πολιτική) τα οποία διαδραματίζουν σημαντικό ρόλο στην απόφαση των πελατών για την τράπεζα που θα επιλέξουν. Τα κριτήρια αυτά εξετάζονται ξεχωριστά για κάθε τμήμα της τραπεζικής αγοράς (στεγαστικά δάνεια, καταναλωτικά δάνεια, πιστωτικές κάρτες, άλλα δάνεια, λογαριασμοί ταμιευτηρίου, λογαριασμοί προθεσμιακών καταθέσεων και μερίδια αμοιβαίων κεφαλαίων) και υπολογίζονται οι συντελεστές στάθμισης που αντιστοιχούν στο καθένα. Οι συντελεστές αυτοί, έχουν ιδιαίτερη αξία για τα στελέχη της τράπεζας γιατί δείχνουν την αξία που έχει κάθε κριτήριο για τον πελάτη. Με αυτό τον τρόπο, τα στελέχη έχουν την δυνατότητα να σχεδιάσουν τις τραπεζικές υπηρεσίες δίνοντας μεγαλύτερη έμφαση στα κριτήρια με τη μεγαλύτερη βαρύτητα έτσι ώστε να επιτυγχάνεται καλύτερη ικανοποίηση των αναγκών των πελατών. Πιο συγκεκριμένα, στην παρούσα εργασία μελετάται η περίπτωση μιας ελληνικής τράπεζας, που κατέχει υψηλό μερίδιο αγοράς και για καθεμία από τις υπηρεσίες της υπολογίζονται οι συντελεστές στάθμισης. Η τράπεζα αυτή αναφέρεται ως Τράπεζα Χ στην υπόλοιπη εργασία για ευνόητους λόγους. Η επίλυση του προβλήματος πραγματοποιείται με δύο τρόπους: 1) με την χρήση της μεθοδολογίας AHP (Analytic Hierarchy Process) σε συνδυασμό με τη μέθοδο QFD (Quality Function Deployment) για την συμπλήρωση του πίνακα HOQ (House of Quality) και 2) την χρήση της μεθοδολογίας DEAHP (Data Envelopment Analytic Hierarchy Process) σε συνδυασμό με το QFD για την συμπλήρωση του HOQ.
Τα αποτελέσματα της παρούσας μελέτης δείχνουν ότι και στις δύο μεθοδολογίες η κατάταξη των κριτηρίων βάσει των προτιμήσεων των πελατών είναι σχεδόν η ίδια. Συγκεκριμένα, τα δύο πρώτα κριτήρια στα οποία οι πελάτες δίνουν μεγαλύτερη βαρύτητα είναι τα έξοδα λογαριασμών και τα επιτόκια δανείων. Ακολουθούν τα κριτήρια φήμη, πρόταση από φίλο, πάρκινγκ κατά φθίνουσα σειρά κατάταξης και τελευταία είναι τα κριτήρια τοποθεσία και πιστωτική πολιτική. Ωστόσο, οι συντελεστές βαρύτητας των κριτηρίων που υπολογίστηκαν είναι διαφορετικοί στο συνδυασμό των μεθοδολογιών QFD-AHP σε σχέση με QFD-DEAHP. Αυτό συμβαίνει λόγω των διαφορετικών τρόπων επίλυσης και διαφορετικών υποθέσεων που χρησιμοποιούνται σε καθεμία μεθοδολογία. / This study was conducted at the Department of the Postgraduate program “New principles of Business Administration” in department of Business Administration of the University of Patras.
The objective of this study is to present a methodology which can be used to design better services. This methodology is applied in order to investigate the efficiency of the services of a bank. For this purpose we used pre-defined criteria (recommendation by friends, reputation, expense accounts, location, interest charges on loans, parking, credit policy) which play an important role when the customers select a bank. These criteria are examined separately for each segment for the banking market (housing loans, consumer loans, credit cards, other loans, direct access deposits, time deposit accounts, matual funds shares) and we calculate the relative weight of each criterion. The relative weights above are important for the bank executives because they show the impact of each criterion in the opinion of customers. In this way, executives are able to design their banking services placing emphasis on the criteria with the highest preference in order to satisfy customer needs. Specifically, in this study we examine the case of a Greek bank with high market share and we calculate the weights for each service of the bank. This bank is called Bank X in the remaining study for obvious reasons. The problem was solved with two different ways: 1) by using the combination of AHP (Analytic Hierarchy Process) with QFD (Quality Function Deployment) methodology in order to complete the matrix of HOQ (House of Quality) and 2) by using DEAHP (Data Envelopment Analytic Hierarchy Process) methodology and QFD in order to complete the HOQ.
The results of this study show that the ranking of bank selection criteria is almost the same for both methodologies. Specifically the first two criteria which customers seems to prefer are the expenses accounts and interest charges on loans. The rest of criteria are reputation, recommendation by friends, parking in descending order of priority and finally are the criteria location and credit policy. However, the weights which calculated for each criterion are different in combination of methodologies QFD-AHP compared with QFD-DEAHP. This happens because of the different ways of solving and different assumptions which are used in each methodology.
|
227 |
Συγκριτική αξιολόγηση μονάδων διανομής της ΔΕΗ με την περιβάλλουσα ανάλυση δεδομένωνΚάρτας, Άγγελος 25 February 2010 (has links)
Η παρούσα εργασία πραγματεύεται το πρόβλημα της συγκριτικής αξιολόγησης των Μονάδων Διανομής της ΔΕΗ, και ειδικότερα των 14 Περιοχών της Διεύθυνσης Περιφέρειας Πελοποννήσου – Ηπείρου, με τη βοήθεια της μεθόδου περιβάλλουσας ανάλυσης δεδομένων, της DEA (Data Envelopment Analysis). Οι εξεταζόμενες Περιοχές είναι: Αγρίνιο, Αίγιο, Άρτα, Ζάκυνθος, Ιωάννινα, Καλαμάτα, Κέρκυρα, Κεφαλονιά, Κόρινθος, Ναύπλιο, Πάτρα, Πύργος, Σπάρτη και Τρίπολη.
Η ΔΕΗ είναι η μοναδική εταιρεία διανομής ηλεκτρικής ενέργειας στη χώρα, η οποία έχει στην ιδιοκτησία της το δίκτυο διανομής και είναι υπεύθυνη για τη διανομή της ηλεκτρικής ενέργειας σε όλη την ελληνική επικράτεια. Η κάθε Περιοχή αποτελεί καταρχήν ανεξάρτητη οικονομική – διοικητική μονάδα, η οποία έχει αποστολή την ανάπτυξη, την συντήρηση και την λειτουργία του Δικτύου του γεωγραφικού χώρου ευθύνης της, καθώς και την παροχή πρόσβασης σ’ αυτό προς όλους του δικαιούμενους, σύμφωνα με τις σχετικές διατάξεις του Κώδικα Διαχείρισης Δικτύου. Η επίτευξη της αποστολής αυτής θα πρέπει να γίνεται με την καλύτερη δυνατή διαχείριση και αξιοποίηση των πόρων που διαθέτει η κάθε Περιοχή.
Ως εισροές για κάθε Περιοχή είναι η εργασία (αριθμός των μισθωτών), ο κύριος εξοπλισμός (δίκτυα διανομής και μετασχηματιστές διανομής) και τα λειτουργικά έξοδα (ελέγξιμες δαπάνες εκμετάλλευσης). Ο Κώδικας Διαχείρισης Δικτύου δίνει ιδιαίτερη σημασία στην ποιότητα της παρεχόμενης ενέργειας και εξυπηρέτησης προς τους πελάτες. Για τον λόγο αυτό, υιοθετούνται επίσης ως εισροές, αντιπροσωπευτικά τους μεγέθη όπως: αριθμός βλαβών στο δίκτυο διανομής και χρόνος αποκατάστασης αυτών, καθώς και χρόνοι παροχών (μελέτη & κατασκευή). Ως εκροές, για μια Περιοχή Διανομής είναι ο αριθμός των πελατών (Χαμηλής Τάσης και Μέσης Τάσης), και η αντίστοιχη πωληθήσα ηλεκτρική ενέργεια.
Η σχετική αποδοτικότητα των Περιοχών υπολογίσθηκε με βάση την δυνατότητά τους να μειώσουν τις εισροές με δεδομένα τα υφιστάμενα επίπεδα εκροών (προσανατολισμός στην εισροή). Τα δεδομένα που χρησιμοποιήθηκαν αφορούν στοιχεία για το έτος 2007. Χρησιμοποιήθηκε το λογισμικό Warwick DEA Software, (Warwick Business School, Warwick University, UK).
Επίσης υπολογίσθηκαν οι συντελεστές συσχέτισης Pearson και Kendall, προκειμένου να εξεταστεί η ύπαρξη πιθανών συσχετίσεων μεταξύ των δεικτών αποδοτικότητας που προκύπτουν από την εφαρμογή της μεθόδου DEA και των απλών δεικτών αποδοτικότητας, ορισμένοι από τους οποίους χρησιμοποιούνται από τη ΔΕΗ, εκτιμούν όμως μεμονωμένους μόνο παράγοντες των Μονάδων.
Από την ανάλυση των δεδομένων προέκυψαν τα ακόλουθα, (τα οποία δεν υιοθετούνται απαραίτητα από την ΔΕΗ):
• Γενικά η αποδοτικότητα των Περιοχών είναι σχετικά υψηλή (>80%), πλην μιας Περιοχής.
• Ο κύριος εξοπλισμός των Περιοχών (δίκτυο διανομής και μετασχηματιστές διανομής) και οι υπηρεσίες που προσφέρουν στους πελάτες τους (αριθμός πελατών και πωληθήσα ηλεκτρική ενέργεια) αποτελούν καθοριστικούς παράγοντες για την καταρχήν κατάταξή τους με βάση την τεχνική τους αποδοτικότητα.
• Λαμβάνοντας όμως υπόψη στη μελέτη και άλλα κριτήρια, όπως οι ελέγξιμες δαπάνες, η ποιότητα της παρεχόμενης ενέργειας και η ποιότητα των παρεχόμενων υπηρεσιών, προκύπτει διαφοροποίηση στην αρχική κατάταξη των μη αποδοτικών Περιοχών, οι οποίες εν γένει βελτιώνουν την αποδοτικότητά τους, εκτός από τρεις περιοχές, οι οποίες παραμένουν στάσιμες.
• Εξετάζοντας την αποδοτικότητα κλίμακας (σύγκριση της τεχνικής αποδοτικότητας κάθε Περιοχής, υπό κλίμακα σταθερών και μεταβλητών αποδόσεων), προκύπτει ότι υπάρχει επίπτωση του μεγέθους της κλίμακας στην παραγωγικότητα της αποτιμώμενης Περιοχής σε 6 Περιοχές, (αποδοτικότητα κλίμακας < 1).
• Ορισμένοι από τους απλούς δείκτες αποδοτικότητας, οι οποίοι χρησιμοποιούνται και από τη ΔΕΗ, έχουν σημαντική συσχέτιση με τους δείκτες αποδοτικότητας που προκύπτουν από την εφαρμογή της μεθόδου DEA και μπορούν να εξηγήσουν την βαρύτητα ορισμένων παραγόντων στην διαμόρφωση της τεχνικής αποδοτικότητας των Μονάδων. Δεν παύουν όμως αυτοί οι απλοί δείκτες να εκτιμούν μεμονωμένους μόνο παράγοντες των Μονάδων, χωρίς να μπορούν να εκτιμήσουν την συνολική τεχνική αποδοτικότητα, όπως κάνει η μεθοδολογία DEA.
• Η μέθοδος DEA μπορεί να αποτελέσει ένα βασικό και χρήσιμο εργαλείο πληροφόρησης και κατεύθυνσης για την ιεραρχία των Περιοχών, χωρίς όμως απαραίτητα να αποτελεί πανάκεια για τη λήψη αποφάσεων, αφήνοντας κατ’ αυτό τον τρόπο περιθώρια πρωτοβουλιών στη διοίκηση των Μονάδων. Η μέθοδος DEA συμβάλλει επίσης στην ανάπτυξη ενός εσωτερικού ανταγωνισμού μεταξύ των Μονάδων Διανομής.
Περαιτέρω έρευνα με την εφαρμογή της μεθόδου σε δεδομένα περισσότερων ετών (π.χ. πενταετία), θα οδηγούσε σε ποιο ασφαλή και αξιόπιστα αποτελέσματα, λαμβάνοντας υπόψη κατ’ αυτό τον τρόπο και την εξέλιξη – πορεία των Περιοχών στο χρόνο. Η έρευνα θα μπορούσε επίσης να εφαρμοστεί για όλες της Περιοχές της Διανομής (59 Περιοχές) και να προκύψουν συγκριτικά αποτελέσματα για τις 5 Περιφερειακές Διευθύνσεις της Γενικής Διεύθυνσης Διανομής. / The present thesis deals with the problem of comparative evaluation of Distribution Districts of Power Public Corporation (PPC), and more specifically the 14 Districts of Peloponnese – Epirus Region Department, with the use of DEA (Data Envelopment of Analysis). The examined Districts are: Aegio, Agrinio, Arta, Corfu, Ioannina, Kalamata, Kefalonia, Korinthos, Nauplio, Patras, Pyrgos, Sparti, Tripoli and Zakynthos.
PPC is the only company of electric energy distribution in the country, which is the ownership of the distribution network. Every District constitutes an independent economic–administrative unit, which has the mission of development, operation and maintenance of its network. It is also responsible to assure the access to the network of the beneficiaries (consumers & producers), according to the Distribution Network Operation Code.
As inputs for each District are the work (personnel), the main equipment (distribution network and distribution transformers) and the functional expenses (controllable expenses). The Distribution Network Operation Code gives particular importance in the quality of provided energy and service to the customers. For this reason, they are adopted also as inputs: the number of network interruptions and the duration of interruptions, as well as the connection time to the network (study and construction). As outputs for each District are the number of customers (Low Voltage and Medium Voltage) and the supplied energy.
The relative efficiency of Districts was calculated based on their possibility to decrease their inputs keeping their outputs constant (input orientation). The data that were used concern the year 2007. The Warwick DEA Software used for the calculations (Warwick Business School, Warwick University, UK).
The Pearson and Kendall correlation coefficient were also calculated and the DEA technical efficiencies were compared with simple indices of efficiency, which PPC uses.
From the analysis of data resulted following, (that are not necessarily adopted by PPC):
• Generally the Districts efficiency is relatively high (> 80%), except one District.
• The main equipment of Districts (distribution network and distribution transformers) and the offered services to their customers (number of customers and supplied energy) constitute decisive factors for their initial classification based on their technical efficiency.
• Taking into consideration more criteria, as the controllable expenses, the quality of provided energy and the quality of provided services, result differentiation in the initial classification of not efficient Districts, what in general improve their efficiency, apart from three Districts, what remain stagnant.
• Examining the scale efficiency (comparison of technical efficiency of each District, under variable and constant returns to scale), it results that exists effect of scale size in the productivity of 6 Districts, (scale efficiency < 1).
• Some of simple indices of efficiency, which are also used by PPC, have important correlation with the DEA efficiencies and may explain the importance of some factors in the configuration of technical efficiency of Districts. However these simple indices continue to estimate only individual factors of Districts and not the total technical efficiency, as DEA does.
• DEA can be a basic and useful tool of information and direction for the Districts Directors, without however be panacea for the decision-making, leaving in this way margins of initiatives in the Districts administration. DEA also contributes to the promotion of internal competition between the Distribution Districts.
|
228 |
Multidimensional approaches to performance evaluation of competing forecasting modelsXu, Bing January 2009 (has links)
The purpose of my research is to contribute to the field of forecasting from a methodological perspective as well as to the field of crude oil as an application area to test the performance of my methodological contributions and assess their merits. In sum, two main methodological contributions are presented. The first contribution consists of proposing a mathematical programming based approach, commonly referred to as Data Envelopment Analysis (DEA), as a multidimensional framework for relative performance evaluation of competing forecasting models or methods. As opposed to other performance measurement and evaluation frameworks, DEA allows one to identify the weaknesses of each model, as compared to the best one(s), and suggests ways to improve their overall performance. DEA is a generic framework and as such its implementation for a specific relative performance evaluation exercise requires a number of decisions to be made such as the choice of the units to be assessed, the choice of the relevant inputs and outputs to be used, and the choice of the appropriate models. In order to present and discuss how one might adapt this framework to measure and evaluate the relative performance of competing forecasting models, we first survey and classify the literature on performance criteria and their measures – including statistical tests – commonly used in evaluating and selecting forecasting models or methods. In sum, our classification will serve as a basis for the operationalisation of DEA. Finally, we test DEA performance in evaluating and selecting models to forecast crude oil prices. The second contribution consists of proposing a Multi-Criteria Decision Analysis (MCDA) based approach as a multidimensional framework for relative performance evaluation of the competing forecasting models or methods. In order to present and discuss how one might adapt such framework, we first revisit MCDA methodology, propose a revised methodological framework that consists of a sequential decision making process with feedback adjustment mechanisms, and provide guidelines as to how to operationalise it. Finally, we adapt such a methodological framework to address the problem of performance evaluation of competing forecasting models. For illustration purposes, we have chosen the forecasting of crude oil prices as an application area.
|
229 |
Benchmarking IT service regions / Victoria G. MadisaMadisa, Victoria Garebangwe January 2008 (has links)
Productivity and efficiency are the tools used in managing performance. This study researches and implements best practices that lead to best performance. A customer quality defined standard has to be created by benchmarking the Information Technology Service Regions which may be used to help decision-makers or management make informed decisions about (1) the effectiveness of service systems, (2) managing the performance of Information Technology Service Regions. Waiting lines or queues are an everyday occurrence and may take the form of customers waiting in a restaurant to be serviced or telephone calls waiting to be answered. The model of waiting lines is used to help managers evaluate the effectiveness of service systems. It determines precisely the optimal number of employees that must work at the centralised service desk. A Data Envelopment Analysis (DEA) methodology is used as a benchmarking tool to locate a frontier which is then used to evaluate the efficiency of each of the organizational units responsible for observed output and input quantities. The inefficient units can learn from the best practice frontier situated along the frontier line. / Thesis (M.Sc. (Computer Science))--North-West University, Vaal Triangle Campus, 2009.
|
230 |
Benchmarking IT service regions / Victoria G. MadisaMadisa, Victoria Garebangwe January 2008 (has links)
Productivity and efficiency are the tools used in managing performance. This study researches and implements best practices that lead to best performance. A customer quality defined standard has to be created by benchmarking the Information Technology Service Regions which may be used to help decision-makers or management make informed decisions about (1) the effectiveness of service systems, (2) managing the performance of Information Technology Service Regions. Waiting lines or queues are an everyday occurrence and may take the form of customers waiting in a restaurant to be serviced or telephone calls waiting to be answered. The model of waiting lines is used to help managers evaluate the effectiveness of service systems. It determines precisely the optimal number of employees that must work at the centralised service desk. A Data Envelopment Analysis (DEA) methodology is used as a benchmarking tool to locate a frontier which is then used to evaluate the efficiency of each of the organizational units responsible for observed output and input quantities. The inefficient units can learn from the best practice frontier situated along the frontier line. / Thesis (M.Sc. (Computer Science))--North-West University, Vaal Triangle Campus, 2009.
|
Page generated in 0.0341 seconds