• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 101
  • 78
  • 22
  • 20
  • 16
  • 7
  • 6
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 297
  • 297
  • 133
  • 129
  • 67
  • 66
  • 58
  • 56
  • 55
  • 54
  • 51
  • 49
  • 47
  • 42
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Electromagnetic interventions as a therapeutic approach to spreading depression

Reddy, Vamsee 13 July 2017 (has links)
Spreading depression (SD) is a slow propagating wave of depolarization that can spread throughout the cortex in the event of brain injury or any general energy failure of the brain. Massive cellular depolarization causes enormous ionic and water shifts and silences synaptic transmission in the affected tissue. Large amounts of energy are required to restore ionic gradients and are not always met. When these energetic demands are not met, brain tissue damage can occur. The exact mechanism behind initiation and propagation of SD are unknown, but a general model is known. It may be possible to prevent or delay the onset of SD using non-invasive electromagnetic techniques. Transcranial magnetic stimulation (TMS), electrical stimulation (ES), and transcranial direct coupled stimulation (tDCS) could be used to decrease neuronal excitability in different ways. In theory, any technique that can reduce cortical excitability could suppress SD initiating or propagating.
102

An analysis of DC distribution systems

Ajitkumar, Rohit 05 April 2011 (has links)
The Master's Thesis research focuses on analyzing the possibilities of using Direct Current distribution systems to distribute power to end users. Considering the shift in load types in the past few decades and also a growing demand of distributed generation, DC distribution can potentially offer higher efficiencies and cost savings to utilities. The incorporation of DC distribution offers the opportunity to eliminate multiple conversion stages for devices which are powered using DC electricity. The integration of power sources such as photovoltaics and fuel cells, which produce DC power, offer further incentives to consider the use of DC systems. Using DC systems can help eliminate the conversion losses associated with rectifiers and inverters which would be part of the infrastructure if AC distribution was used. In the literature, the study of DC distribution has been limited to customized systems. The objective of this research is to analyze DC distribution when applied to systems based on standard IEEE test feeder systems. The IEEE 13 node test feeder and the IEEE 37 node test feeder will be used as the basis for the analysis. Issues such as associated costs, protection and integration of appliances will also be addressed.
103

Verstärkung des antinozizeptiven Effekts der kathodalen transkraniellen Gleichstromstimulation durch den Dopaminagonisten Pergolid / Enhancement of the antinozizeptive effect of cathodal trancranial direct current stimulation by the dopamine-agonist Pergolide

Bergmann, Inga 11 May 2010 (has links)
No description available.
104

Combining Transcranial Electrical Stimulation With Magnetic Resonance Imaging In Behavioural Measurements In Health And Disease

Saiote, Catarina 31 January 2014 (has links)
No description available.
105

Modulation Of Neuroplasticity In Humans By Advanced Stimulation Protocols And Neuromodulators

Batsikadze, Giorgi 27 February 2014 (has links)
No description available.
106

Plasma Characteristics of the DC Saddle Field Glow Discharge

Leong, Keith R. 10 January 2014 (has links)
Plasma enhanced chemical vapor deposition systems are massively deployed to grow numerous thin film coatings including hydrogenated amorphous silicon. A new deposition chamber was designed, procured, and constructed to investigate the plasma properties of a 100% silane (SiH4) glow discharge with varying chamber pressure and inter-electrode spacing. A Hiden EQP1000 ion mass spectrometer sampled the plasma from the substrates point of view. Ion energy distributions were obtained using four different excitation sources +DC, –DC, radio frequency (at 13.56 MHz), and the DC Saddle Field (DCSF) in the tetrode configuration. The shape of the ion energy distributions was constant for the capacitively coupled +DC, –DC, and rf (at higher pressures of 75 and 160 mTorr) glow discharges. The shape of the ion energy distributions for the DCSF plasma exhibited a double peak or saddle structure analogous to radio frequency plasmas. The width between the peaks (peak separation) was controlled by the pressure and the semi-transparent cathode to semi-transparent anode distance. Ion energy distributions from the DCSF plasma concurred with rf and +DC ion energy distributions at specific pressures and inter-electrode distances. This result demonstrates the versatility of the DCSF glow discharge system. Moreover, control of the peak separation is modeled to be iii equivalent to controlling the critical ratio (ion transit time in the sheath to the electron oscillating period), and/or the inferred electron oscillating sheath potential. The DCSF possesses a fusion of rf and +DC methods. The long high energy tail or constant background are indicative of a +DC high voltage sheath in which there is an increasing fraction of collisionless ions as the anode-cathode distance increases. These collisionless ions are provided by the oscillating electrons (or rf nature) of the DCSF method. Higher order silane (silicon containing) ions increase in relative intensity with increasing inter-electrode spacing for the +DC, –DC, and rf plasmas. These higher order silane ions are also detected in the DCSF plasma, and can be reduced at either lower pressure or lower cathode to anode or cathode to substrate distances.
107

Plasma Characteristics of the DC Saddle Field Glow Discharge

Leong, Keith R. 10 January 2014 (has links)
Plasma enhanced chemical vapor deposition systems are massively deployed to grow numerous thin film coatings including hydrogenated amorphous silicon. A new deposition chamber was designed, procured, and constructed to investigate the plasma properties of a 100% silane (SiH4) glow discharge with varying chamber pressure and inter-electrode spacing. A Hiden EQP1000 ion mass spectrometer sampled the plasma from the substrates point of view. Ion energy distributions were obtained using four different excitation sources +DC, –DC, radio frequency (at 13.56 MHz), and the DC Saddle Field (DCSF) in the tetrode configuration. The shape of the ion energy distributions was constant for the capacitively coupled +DC, –DC, and rf (at higher pressures of 75 and 160 mTorr) glow discharges. The shape of the ion energy distributions for the DCSF plasma exhibited a double peak or saddle structure analogous to radio frequency plasmas. The width between the peaks (peak separation) was controlled by the pressure and the semi-transparent cathode to semi-transparent anode distance. Ion energy distributions from the DCSF plasma concurred with rf and +DC ion energy distributions at specific pressures and inter-electrode distances. This result demonstrates the versatility of the DCSF glow discharge system. Moreover, control of the peak separation is modeled to be iii equivalent to controlling the critical ratio (ion transit time in the sheath to the electron oscillating period), and/or the inferred electron oscillating sheath potential. The DCSF possesses a fusion of rf and +DC methods. The long high energy tail or constant background are indicative of a +DC high voltage sheath in which there is an increasing fraction of collisionless ions as the anode-cathode distance increases. These collisionless ions are provided by the oscillating electrons (or rf nature) of the DCSF method. Higher order silane (silicon containing) ions increase in relative intensity with increasing inter-electrode spacing for the +DC, –DC, and rf plasmas. These higher order silane ions are also detected in the DCSF plasma, and can be reduced at either lower pressure or lower cathode to anode or cathode to substrate distances.
108

Bird streamer initiated breakdowns under HVDC conditions.

Naidoo, Kribashen. January 2007 (has links)
This dissertation describes the role played by bird streamers in transmission line faults under HVDC conditions. The research was initiated due to the lack of knowledge of these faults under HVDC conditions. An explanation as to what bird streamers faults are, the role they play in the breakdown of air-gaps and a means of preventing bird streamer caused faults from occurring is made Experimental work has been carried out in order to gain an understanding of these faults under HVDC conditions. The overall aim of the experiments was to find a horizontal distance (protected zone) on an HVDC tower top, in order to prevent birds from perching around the centre of the tower. This will lead to a reduction of bird streamer caused faults. A brass rod was used as the artificial streamer in the experiments, under both negative and positive polarity (voltages in the range 0 to 220 kV DC were applied). Later in the experimental phase, a string soaked in a saline solution was used as a more realistic simulation of a bird streamer. QuickField™, an FEM package, was used to simulate the electric field in the region of the live conductor fitting and the tip of the bird streamer, to assess the degree of distortion of the electric field caused by the introduction of the bird streamer. These simulations served as means of verifying the laboratory experiments. This dissertation has proposed a relationship between the breakdown voltage and the protected zone length, based on the air-gap breakdown voltages for both I-String and V-String insulator configurations in the air-gap range 0 to 350 mm. These curves can be used in the design of transmission lines, as a means of reducing bird streamer faults. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, 2007.
109

A study of fire-induced air-gap voltage breakdown characteristics under HVDC conditions.

Ntshangase, Zola. January 2012 (has links)
This dissertation investigates the role that is played by high temperatures of air gaps on the breakdown voltage levels under DC positive and negative polarity applied voltages. Due to past experience of AC transmission lines tripping as a result of sugar-cane fires that occur under these lines during cultivation seasons, this study was initiated to investigate this effect under DC applied voltages. Results were obtained from laboratory work conducted and these were closely analysed to understand the behaviour of air gaps under these conditions. A 17mm2 square-cut brass rodrod electrode configuration was used to carry out these tests at the various air gap temperatures. These were induced by a gas burner for both the positive and negative polarities at 200C – 3000C for the 10 mm – 150 mm air gap range and 200C – 1500C for the 200 mm – 500 mm air gap range. Later particles were introduced into the air gap to determine the subsequent behaviour. These were introduced vertically from the top into an air gap via a vibrating micro sieve mechanism to regulate the consistency of the introduction of these particles in the air gap. A reduction of 55% and 50% was observed on the breakdown voltage under positive and negative polarity applied voltages respectively from ambient conditions to 3000C. Additionally the breakdown behaviour of both negative and positive DC was found to be linear which is similar to the AC case. However, air gaps subjected to positive DC applied voltages were found to portray an inferior dielectric strength as opposed to the equivalent negative DC polarity. The study found that the effect of particles in the air gap is practically negligible and that for practical purposes, only the temperature effect plays a role due to the reduced air density at high temperatures. Empirical models for both the positive and negative DC polarities have been proposed by the study that incorporate the effect of the temperature in the air gap to enable the determination or prediction of the breakdown voltage level at various temperatures. These models may be utilised for DC transmission line design for servitudes in areas that are known to be prone to fires. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2012.
110

Maximum power point tracking algorithm for photovoltaic home power supply.

Nkashama, Cedrick Lupangu. January 2011 (has links)
Solar photovoltaic (PV) systems are distributed energy sources that are an environmentally friendly and renewable source of energy. However, solar PV power fluctuates due to variations in radiation and temperature levels. Furthermore, when the solar panel is directly connected to the load, the power that is delivered is not optimal. A maximum peak power point tracker is therefore necessary for maximum efficiency. A complete PV system equipped maximum power point tracking (MPPT) system includes a solar panel, MPPT algorithm, and a DC-DC converter topology. Each subsystem is modeled and simulated in a Matlab/Simulink environment; then the whole PV system is combined with the battery load to assess the overall performance when subjected to varying weather conditions. A PV panel model of moderate complexity based on the Shockley diode equation is used to predict the electrical characteristics of the cell with regard to changes in the atmospheric parameter of irradiance and temperature. In this dissertation, five MPPT algorithms are written in Matlab m-files and investigated via simulations. The standard Perturb and Observe (PO) algorithm along with its two improved versions and the conventional Incremental Conductance (IC) algorithm, also with its two-stage improved version, are assessed under different atmospheric operating conditions. An efficient two-mode MPPT algorithm combining the incremental conductance and the modified constant voltage methods is selected from the five ones as the best model, because it provides the highest tracking efficiencies in both sunny and cloudy weather conditions when compared to other MPPT algorithms. A DC-DC converter topology and interface study between the panel and the battery load is performed. This includes the steady state and dynamic analysis of buck and boost converters and allows the researcher to choose the appropriate chopper for the current PV system. Frequency responses using the state space averaged model are obtained for both converters. They are displayed with the help of Bode and root locus methods based on their respective transfer functions. Following the simulated results displayed in Matlab environment for both choppers, an appropriate converter is selected and implemented in the present PV system. The chosen chopper is then modeled using the Simulink Power Systems toolbox and validates the design specifications. The simulated results of the complete PV system show that the performances of the PV panel using the improved two-stage MPPT algorithm provides better steady state and fast transient characteristics when compared with the conventional incremental conductance method. It yields not only a reduction in convergence time to track the maximum power point MPP, but also a significant reduction in power fluctuations around the MPP when subjected to slow and rapid solar irradiance changes. / Thesis (M.Sc.Eng)-University of KwaZulu-Natal, Durban, 2011.

Page generated in 0.0574 seconds