• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 818
  • 148
  • 89
  • 72
  • 66
  • 32
  • 17
  • 15
  • 9
  • 8
  • 7
  • 7
  • 5
  • 5
  • 4
  • Tagged with
  • 1592
  • 194
  • 193
  • 188
  • 164
  • 111
  • 103
  • 100
  • 91
  • 85
  • 79
  • 77
  • 76
  • 75
  • 74
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

A neuromorphic approach for edge use allocation

Petersson Steenari, Kim January 2022 (has links)
This paper introduces a new way of solving an edge user allocation problem. The problem is to be solved with a network of spiking neurons. This network should quickly and with low energy cost solve the optimization problem of allocating users to servers and minimizing the amount of servers hired to reduce the related hiring cost. The demonstrated method is a simulation of a method which could be implemented onto neuromorphic hardware. It is written in Python using the Brian2 spiking neural network simulator. The core of the method involves simulating an energy function through the use of circuit motifs. The dynamics of these circuit motifs mimic a search for the lowest energy point in an energy landscape, corresponding to a valid solution for the edge user allocation problem. The paper also shows the results of testing this network within the Brian2 environment.
42

A Novel Antenna Design for Size Constrained Applications Requiring a Thin Conformal Antenna

Cirineo, Anthony, David, Rick 10 1900 (has links)
ITC/USA 2010 Conference Proceedings / The Forty-Sixth Annual International Telemetering Conference and Technical Exhibition / October 25-28, 2010 / Town and Country Resort & Convention Center, San Diego, California / This paper will discuss the design of a new antenna element for use on vehicles requiring a thin conformal antenna such as on missiles or targets. The new element employs a partial shorted edge, which reduces the size of the element compared to a traditional microwave patch, while maintaining the impedance bandwidth.
43

Numerical simulation of a film cooled turbine blade leading edge including heat transfer effects

Dobrowolski, Laurene D. 2009 August 1900 (has links)
Computations and experiments were run to study heat transfer and overall effectiveness for a simulated turbine blade leading edge. Computational predictions were run for a film cooled leading edge model using a conjugate numerical method to predict the normalized “metal” temperatures for the model. This computational study was done in conjunction with a parallel effort to experimentally determine normalized metal temperatures, i.e. overall effectiveness, using a specially designed high conductivity model. Predictions of overall effectiveness were higher than experimentally measured values in the stagnation region, but lower along the downstream section of the leading edge. Reasons for the differences between computational predictions and experimental measurements were examined. Also of interest was the validity of Taw as the driving temperature for heat transfer into the blade, and this was examined via computations. Overall, this assumption gave reasonable results except near the stagnation line. Experiments were also conducted on a leading edge with no film cooling to gain a better understanding of the additional cooling provided by film cooling. Heat flux was also measured and external and internal heat transfer coefficients were determined. The results showed roughly constant overall effectiveness on the external surface. / text
44

Trapped-wave propagation along irregular coasts and channels

Santos, Joao Alfredo Ferreira dos January 1999 (has links)
No description available.
45

Imaging and segmentation of bone in neurological magnetic resonance

Yo, Done Sik January 1998 (has links)
No description available.
46

ELNES investigations of spinels

Docherty, Frances Therese January 2001 (has links)
No description available.
47

Varianty petersenovského obarvení pro některé třídy grafů / Variants of Petersen coloring for some graph classes

Bílková, Hana January 2015 (has links)
Normal coloring - an equivalent version of Petersen coloring - is a special proper 5-edge-coloring of cubic graphs. Every edge in a normally colored graph is normal, i.e. it uses together with its four neighbours either only three colors or all five colors. Jaeger conjectured that every bridgeless cubic graph has a normal coloring. This conjecture, if true, imply for example Cycle double cover conjecture. Here we solve a weakened version of Jaeger's problem. We are looking for a proper 5-edge-coloring such that at least a part of the edges is normal. We show a coloring of generalized prisms with two thirds of the edges normal and a coloring of graphs without short cycles with almost half of the edges normal. Then we propose a new approach to normal coloring - chains. We use chains to prove that there cannot be only one single mistake in an almost normally colored graph. We also prove some statements about cuts in a normally colored graph which also follow from nowhere-zero Petersen flow. Finally, we examine a four-cycle in a normally colored graph. 1
48

Multi-Access Edge Computing Assisted Mobile Ad-hoc Cloud

Bhuchhada, Jay Kumar 05 September 2019 (has links)
Mobile Ad-hoc Cloud offers users the capability to offload intensive tasks on a cloud composed of voluntary mobile devices. Due to the availability of these devices in the proximity, intensive tasks can be processed locally. In addition, the literature referred to in the text, distinguishes a specific class of application to be well addressed when processed at the user level. However, due to lack of commitment, mobility, and unpredictability of the mobile devices, providing a rich ad-hoc cloud service is challenging. Furthermore, the resource availability of these devices impacts the service offered to the requester. As a result, this thesis aims to address the challenges mentioned above. With the support of Multi-Access Edge Computing, a mobile ad-hoc Infrastructure as a Service composition framework is proposed. An ad-hoc application server is designed to operate over the MEC platform to compose and manage the mobile ad-hoc cloud. The server uses the information provided by the MEC services to compose volunteer resources for a given request. As well, a heuristic approach for a multi-dimensional bin packing technique is considered, while extending the Euclidean distance for sub-tasks selection. In addition, to address the lack of resource availability, an architecture for MAC using SDN is proposed. The logically centralized controller works with the application server to migrate requests seamlessly from one region to another. Inspired by the benefits of the MEC, a mobility mechanism is introduced to address the movement of the participants. Finally, based on the evaluation, it was observed that the proposed MAC framework not only provided better use of resources but also provided a consisted and scalable service.
49

The Effect of Humpback Whale-Like Protuberances on Hydrofoil Performance

Custodio, Derrick 26 April 2012 (has links)
The humpback whale is very maneuverable despite its enormous size and rigid body. This agility has been attributed to the use of its pectoral flippers, along the leading edge of which protuberances are present. The leading edge protuberances are considered by some biologists to be a form of passive flow control and/or drag reduction. Force and moment measurements along with qualitative and quantitative flow visualizations were carried out in water tunnel experiments on full-span and finite-span hydrofoil models with several different planforms and protuberance geometries. A NACA 634-021 cross-sectional airfoil profile was used for the baseline foil in all tests. Four planform geometries chosen included: a full-span set of foils which spanned the breadth of the water tunnel, a finite-span rectangular planform, a finite-span swept hydrofoil, and a scale flipper model that resembled the morphology of the humpback whale flipper. A variety of sinusoidal protuberance geometries which included three amplitudes equal to 2.5%, 5%, and 12% and wavelengths of 25% and 50% of the local chord were examined in combination with the different planform geometries. Testing included force and moment measurements and Particle Image Velocimetry (PIV) to examine the load characteristics and flow field surrounding the modified foils. Load measurements show that modified foils are capable of generating higher lift than the baseline at high angles of attack while at low angle of attack the baseline generally produces a lift coefficient equal to or greater than the modified cases. With the exception of the modified flipper model, the drag coefficients of the modified hydrofoils are either equal to or greater than their baseline counterparts. The increased drag reduces the lift-to-drag ratio. Flow visualizations show that vortical structures emanating from the shoulders of the protuberances are responsible for increased lift and drag at high angles. Cavitation tests show that modified foils cavitate in pockets behind the troughs of protuberances whereas the baseline foils produce cavitation along the entire foil span. Also, the cavitation numbers on modified hydrofoils were consistently higher than their baseline counterparts. This work shows the effect of leading edge protuberances on the aforementioned performance characteristics.
50

Tunable topological phases in photonic and phononic crystals

Chen, Zeguo 18 February 2018 (has links)
Topological photonics/phononics, inspired by the discovery of topological insulators, is a prosperous field of research, in which remarkable one-way propagation edge states are robust against impurities or defect without backscattering. This dissertation discusses the implementation of multiple topological phases in specific designed photonic and phononic crystals. First, it reports a tunable quantum Hall phase in acoustic ring-waveguide system. A new three-band model focused on the topological transitions at the Γ point is studied, which gives the functionality that nontrivial topology can be tuned by changing the strengths of the couplings and/or the broken time-reversal symmetry. The resulted tunable topological edge states are also numerically verified. Second, based on our previous studied acoustic ring-waveguide system, we introduce anisotropy by tuning the couplings along different directions. We find that the bandgap topology is related to the frequency and directions. We report our proposal on a frequency filter designed from such an anisotropic topological phononic crystal. Third, motivated by the recent progress on quantum spin Hall phases, we propose a design of time-reversal symmetry broken quantum spin Hall insulators in photonics, in which a new quantum anomalous Hall phase emerges. It supports a chiral edge state with certain spin orientations, which is robust against the magnetic impurities. We also report the realization of the quantum anomalous Hall phase in phononics.

Page generated in 0.0525 seconds