Spelling suggestions: "subject:"[een] EIGENVALUE PROBLEM"" "subject:"[enn] EIGENVALUE PROBLEM""
11 |
On the Role of Ill-conditioning: Biharmonic Eigenvalue Problem and Multigrid AlgorithmsBray, Kasey 01 January 2019 (has links)
Very fine discretizations of differential operators often lead to large, sparse matrices A, where the condition number of A is large. Such ill-conditioning has well known effects on both solving linear systems and eigenvalue computations, and, in general, computing solutions with relative accuracy independent of the condition number is highly desirable. This dissertation is divided into two parts.
In the first part, we discuss a method of preconditioning, developed by Ye, which allows solutions of Ax=b to be computed accurately. This, in turn, allows for accurate eigenvalue computations. We then use this method to develop discretizations that yield accurate computations of the smallest eigenvalue of the biharmonic operator across several domains. Numerical results from the various schemes are provided to demonstrate the performance of the methods.
In the second part we address the role of the condition number of A in the context of multigrid algorithms. Under various assumptions, we use rigorous Fourier analysis on 2- and 3-grid iteration operators to analyze round off errors in floating point arithmetic. For better understanding of general results, we provide detailed bounds for a particular algorithm applied to the 1-dimensional Poisson equation. Numerical results are provided and compared with those obtained by the schemes discussed in part 1.
|
12 |
Solution of algebraic problems arising in nuclear reactor core simulations using Jacobi-Davidson and Multigrid methodsHavet, Maxime M 10 October 2008 (has links)
The solution of large and sparse eigenvalue problems arising from the discretization of the diffusion equation is considered. The multigroup
diffusion equation is discretized by means of the Nodal expansion Method (NEM) [9, 10]. A new formulation of the higher order NEM variants revealing the true nature of the problem, that is, a generalized eigenvalue problem, is proposed. These generalized eigenvalue problems are solved using the Jacobi-Davidson (JD) method
[26]. The most expensive part of the method consists of solving a linear system referred to as correction equation. It is solved using Krylov subspace methods in combination with aggregation-based Algebraic Multigrid (AMG) techniques. In that context, a particular
aggregation technique used in combination with classical smoothers, referred to as oblique geometric coarsening, has been derived. Its particularity is that it aggregates unknowns that
are not coupled, which has never been done to our
knowledge. A modular code, combining JD with an AMG preconditioner, has been developed. The code comes with many options, that have been tested. In particular, the instability of the Rayleigh-Ritz [33] acceleration procedure in the non-symmetric case has been underlined. Our code has also been compared to an industrial code extracted from ARTEMIS.
|
13 |
Directional Decomposition in Anisotropic Heterogeneous Media for Acoustic and Electromagnetic FieldsJonsson, B. Lars G. January 2001 (has links)
Directional wave-field decomposition for heterogeneousanisotropic media with in-stantaneous response is establishedfor both the acoustic and the electromagnetic equations. We derive a sufficient condition for ellipticity of thesystem's matrix in the Laplace domain and show that theconstruction of the splitting matrix via a Dunford-Taylorintegral over the resolvent of the non-compact, non-normalsystem's matrix is well de ned. The splitting matrix also hasproperties that make it possible to construct the decompositionwith a generalized eigenvector procedure. The classical way ofobtaining the decomposition is equivalent to solving analgebraic Riccati operator equation. Hence the proceduredescribed above also provides a solution to the algebraicRiccati operator equation. The solution to the wave-field decomposition for theisotropic wave equation is expressed in terms of theDirichlet-to-Neumann map for a plane. The equivalence of thisDirichlet-to-Neumann map is the acoustic admittance, i.e. themapping between the pressure and the particle velocity. Theacoustic admittance, as well as the related impedance aresolutions to algebraic Riccati operator equations and are keyelements in the decomposition. In the electromagnetic case thecorresponding impedance and admittance mappings solve therespective algebraic Riccati operator equations and henceprovide solutions to the decomposition problem. The present research shows that it is advantageous toutilize the freedom implied by the generalized eigenvectorprocedure to obtain the solution to the decomposition problemin more general terms than the admittance/impedancemappings. The time-reversal approach to steer an acoustic wave eld inthe cavity and half space geometries are analyzed from aboundary control perspective. For the cavity it is shown thatwe can steer the field to a desired final configuration, withthe assumption of local energy decay. It is also shown that thetime-reversal algorithm minimizes a least square error forfinite times when the data are obtained by measurements. Forthe half space geometry, the boundary condition is expressedwith help of the wave-field decomposition. In the homogeneousmaterial case, the response of the time-reversal algorithm iscalculated analytically. This procedure uses the one-wayequations together with the decomposition operator.
|
14 |
Analysis of Uniform-Strength Shape by the Growth-Strain Method (Application to the Problems of Steady-State Vibration)AZEGAMI, Hideyuki, OGIHARA, Tadashi, TAKAMI, Akiyasu 15 September 1991 (has links)
No description available.
|
15 |
Directional Decomposition in Anisotropic Heterogeneous Media for Acoustic and Electromagnetic FieldsJonsson, B. Lars G. January 2001 (has links)
<p>Directional wave-field decomposition for heterogeneousanisotropic media with in-stantaneous response is establishedfor both the acoustic and the electromagnetic equations.</p><p>We derive a sufficient condition for ellipticity of thesystem's matrix in the Laplace domain and show that theconstruction of the splitting matrix via a Dunford-Taylorintegral over the resolvent of the non-compact, non-normalsystem's matrix is well de ned. The splitting matrix also hasproperties that make it possible to construct the decompositionwith a generalized eigenvector procedure. The classical way ofobtaining the decomposition is equivalent to solving analgebraic Riccati operator equation. Hence the proceduredescribed above also provides a solution to the algebraicRiccati operator equation.</p><p>The solution to the wave-field decomposition for theisotropic wave equation is expressed in terms of theDirichlet-to-Neumann map for a plane. The equivalence of thisDirichlet-to-Neumann map is the acoustic admittance, i.e. themapping between the pressure and the particle velocity. Theacoustic admittance, as well as the related impedance aresolutions to algebraic Riccati operator equations and are keyelements in the decomposition. In the electromagnetic case thecorresponding impedance and admittance mappings solve therespective algebraic Riccati operator equations and henceprovide solutions to the decomposition problem.</p><p>The present research shows that it is advantageous toutilize the freedom implied by the generalized eigenvectorprocedure to obtain the solution to the decomposition problemin more general terms than the admittance/impedancemappings.</p><p>The time-reversal approach to steer an acoustic wave eld inthe cavity and half space geometries are analyzed from aboundary control perspective. For the cavity it is shown thatwe can steer the field to a desired final configuration, withthe assumption of local energy decay. It is also shown that thetime-reversal algorithm minimizes a least square error forfinite times when the data are obtained by measurements. Forthe half space geometry, the boundary condition is expressedwith help of the wave-field decomposition. In the homogeneousmaterial case, the response of the time-reversal algorithm iscalculated analytically. This procedure uses the one-wayequations together with the decomposition operator.</p>
|
16 |
Preconditioned iterative methods for a class of nonlinear eigenvalue problemsSolov'ëv, Sergey I. 31 August 2006 (has links) (PDF)
In this paper we develop new preconditioned
iterative methods for solving monotone nonlinear
eigenvalue problems. We investigate the convergence
and derive grid-independent error estimates for
these methods. Numerical experiments demonstrate
the practical effectiveness of the proposed methods
for a model problem.
|
17 |
Structured numerical problems in contemporary applicationsSustik, Mátyás Attila 31 October 2013 (has links)
The presence of structure in a computational problem can often be exploited and can lead to a more efficient numerical algorithm. In this dissertation, we look at structured numerical problems that arise from applications in wireless communications and machine learning that also impact other areas of scientific computing. In wireless communication system designs, certain structured matrices (frames) need to be generated. The design of such matrices is equivalent to a symmetric inverse eigenvalue problem where the values of the diagonal elements are prescribed. We present algorithms that are capable of generating a larger set of these constructions than previous algorithms. We also discuss the existence of equiangular tight frames---frames that satisfy additional structural properties. Kernel learning is an important class of problems in machine learning. It often relies on efficient numerical algorithms that solve underlying convex optimization problems. In our work, the objective functions to be minimized are the von Neumann and the LogDet Bregman matrix divergences. The algorithm that solves this optimization problem performs matrix updates based on repeated eigendecompositions of diagonal plus rank-one matrices in the case of von Neumann matrix divergence, and Cholesky updates in case of the LogDet Bregman matrix divergence. Our contribution exploits the low-rank representations and the structure of the constraint matrices, resulting in more efficient algorithms than previously known. We also present two specialized zero-finding algorithms where we exploit the structure through the shape and exact formulation of the objective function. The first zero-finding task arises during the matrix update step which is part of the above-mentioned kernel learning application. The second zero-finding problem is for the secular equation; it is equivalent to the computation of the eigenvalues of a diagonal plus rank-one matrix. The secular equation arises in various applications, the most well-known is the divide-and-conquer eigensolver. In our solutions, we build upon a somewhat forgotten zero-finding method by P. Jarratt, first described in 1966. The method employs first derivatives only and needs the same amount of evaluations as Newton's method, but converges faster. Our contributions are the more efficient specialized zero-finding algorithms. / text
|
18 |
成長ひずみ法による平等強さ形状の解析(定常振動問題への適用)畔上, 秀幸, Azegami, Hideyuki, 荻原, 忠, Ogihara, Tadashi, 高見, 昭康, Takami, Akiyasu 03 1900 (has links)
No description available.
|
19 |
Studies on Matrix Eigenvalue Problems in Terms of Discrete Integrable Systems / 離散可積分系による行列固有値問題の研究Akaiwa, Kanae 24 September 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第19341号 / 情博第593号 / 新制||情||103(附属図書館) / 32343 / 京都大学大学院情報学研究科数理工学専攻 / (主査)教授 中村 佳正, 教授 矢ケ崎 一幸, 教授 西村 直志 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
20 |
Studies on Non-autonomous Discrete Hungry Integrable Systems Associated with Some Eigenvalue Problems / 固有値問題に関連する非自励型離散ハングリー可積分系の研究Shinjo, Masato 25 September 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第20739号 / 情博第653号 / 新制||情||113(附属図書館) / 京都大学大学院情報学研究科数理工学専攻 / (主査)教授 中村 佳正, 教授 山下 信雄, 教授 西村 直志 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
Page generated in 0.0465 seconds