• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 27
  • 9
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 83
  • 23
  • 20
  • 14
  • 12
  • 11
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Electrodisinfection of Municipal Wastewater Effluent

Peterson, Mark 10 August 2005 (has links)
To avoid the spread of disease from sewage treatment effluents, pathogenic microorganisms present must be destroyed by one or a combination of disinfection methods. Chlorine remains the predominant disinfectant used although it consumes considerable amounts of energy and has associated exposure risks from production, transportation and storage of this poisonous gas. In addition to bacteria and other objectionable microorganisms, color, suspended and colloidal solids also require removal from water for reuse. Aluminum and iron additions have been used to coagulate and remove non-settleable solids. By electrically dissolving aluminum to form solids-bridging aluminum hydroxide, the water itself can also be disinfected by the effects of electrical fields and its reactions to form disinfectant chemicals and direct destruction of microorganisms in the water. This research investigated the effects of electrical current, time, and chloride concentration on the electrochemical disinfection of sewage treatment plant effluent using aluminum electrodes to substitute for chlorine disinfection.
12

Treatment of Nanosized TiO2-Containing Organic Wastewater by a Simultaneous Electrocoagulation/Electrofiltration Process

Chuang, Chih-Chuan 30 July 2004 (has links)
In this study, nanosized TiO2-containing organic wastewater was treated with a simultaneous electrocoagulation/electrofiltration (EC/EF) process using either a recirculation mode or a flow-through mode. In the EC/EF treatment module, iron and stainless steel (SS 304) were respectively selected as the anode and cathode, and polyvinylidene fluoride (PVDF) with a nominal pore size of 0.1 £gm was used in this work. Applied electric field strength (EFS), transmembrane pressure (TMP), and crossflow velocity (CFV) were selected as the operating parameters for studying their effects on permeate qualities and other performance criteria. In the recirculation mode, the residual chemical oxygen demand (COD) was found to decrease with increasing EFS up to the critical EFS (i.e., 166.7 V/cm) and leveled off. The optimal operating conditions were determined to be an EFS of 166.7 V/cm, a TMP of 1 kgf/cm2, and a CFV of 0.22 cm/s. Under the optimal operating conditions, the removal efficiencies for turbidity, conductivity, total dissolved solids (TSD), and titanium were determined to be 98.7%, 95.1%, 95.8%, and 99.9%, respectively. By using the same operating conditions except in the flow-through mode, the corresponding removal efficiencies were found to be 98.1%, 92.3%, 93.1%, and 99.9%, respectively. Experimental results also showed that the flow-through mode yielded a higher filtration rate than that of the recirculation mode (namely, 5.05 mL/min versus 4.75 mL/min). This is an indication of a lower extent of membrane fouling for the flow-through mode. This was also evidenced by the scanning electron microscope (SEM) micrographs of the post-treatment membranes. In the recirculation mode, a proper practice of backflushing (e.g., a period of 60 min and a duration of 0.5 min) was found to extend the service life of the membrane and to enhance the permeate flux. I so doing, a minimum treatment rate of 90L/hr with a treatment cost of NT$68.10 per cubic meters would be resulted. Permeate obtained was found to meet the criteria of make-up water for cooling towers. Overall speaking, the simultaneous EC/EF treatment module employed in this work is capable of treating nanosized TiO2-containing organic wastewater for the purpose of reclamation.
13

Evaluation of selected new technologies for animal waste pollution control

Lazenby, Lynn Anne 30 October 2006 (has links)
In 1998, two upper North Bosque River segments were designated as impaired due to the nonpoint source (NPS) pollution of phosphorus (P) to these segments in the watershed. As a result, two Total Maximum Daily Loads (TMDLs) were applied which called for the reduction of annual loading and annual average soluble reactive P (Sol P) concentrations by 50 %. This study was conducted to evaluate the efficacy of two prospective new technologies, an Electrocoagulation (EC) system, and a Geotube® dewatering system to potentially aid the dairy farmers in meeting the goals set by the TMDLs. The EC system analyzed in this study used chemical pretreatment to coagulate and separate solids in effluent pumped from the dairy lagoon; the liquid then flowed over charged iron electrodes giving off ions that cause coagulation and precipitation of P and other metals. Overall, the performance of the system was consistently highly effective in reducing total phosphorus (TP) and Sol P, on average, reducing these constituents by 96% and 99.6% respectively from the dairy lagoon effluent. However this consistency did not hold for the rest of the analytes. In the Geotube® dewatering system geotextile tubes were utilized to dewater dairy lagoon effluent. Results showed this system performed very well in filtering solids from the dairy lagoon effluent, removing an average of 93.5 % of the total solids between the two pumping and dewatering events of March and April. It was effective in removing nutrients and metals as well. The average percent reduction of TP and Sol P for the two events were very high at 97% and 85 % respectively.
14

Alternating current electrocoagulation (AC/EC) of fine particulate suspensions

Ifill, Roy Oswald. January 2010 (has links)
Thesis (Ph. D.)--University of Alberta, 2010. / Title from pdf file main screen (viewed on June 18, 2010). A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical Engineering, Department of Chemical and Materials Engineering, University of Alberta. Includes bibliographical references.
15

Production of colloidal biogenic elemental selenium and removal by different coagulation-flocculation approaches / Bioproduction de sélénium élémentaire colloïdale et traitement à l'aide de procédés de coagulation-flocculation

Staicu, Lucian 19 December 2014 (has links)
Le sélénium (Se) est un élément chalcogène avec un domaine de concentration étroit entre essentialité et toxicité. La toxicité est principalement liée à la spéciation chimique du Se qui évolue en fonction des conditions redox du milieu. Les formes oxyanioniques de Se, le sélénite (Se [IV], SeO32-) et le séléniate (Se [VI], SeO42-), sont solubles dans l'eau, biodisponibles et toxiques. En revanche, le sélénium élémentaire, Se(0), est insoluble et moins toxique. Néanmoins, les nanoparticules du Se(0) sont potentiellement dangereuses pour certains groupes des mollusques (comme les bivalves) et aussi pour les poissons. En outre, lorsque le Se(0) est rejeté dans les écosystèmes aquatiques, sa ré-oxydation jusqu'au sélénite et séléniate peut se produire. Le sélénium élémentaire d'origine biogénique Se(0) a été produit par la réduction de SeO42- dans des conditions anaérobies en utilisant un inoculum microbien mixte (boues granulaires) et par la réduction de SeO32- dans des conditions aérobies en utilisant une culture bactérienne pure (une nouvelle souche de Pseudomonas moraviensis identifiée et caractérisée pour la première fois dans cette thèse). Les deux types de Se(0) ont montré une forte stabilité colloïdale dans l'écart de pH variant de 2 à 12. La stabilité colloïdale est due à la charge négative (-15 mV à -30 mV) de la couche de biopolymère qui entoure Se(0) et à la taille nanométrique des particules de Se(0). La taille des particules de Se(0) produite par la boue anaérobie granulaire se situait entre 50 et 300 nm, avec une taille moyenne de 166 nm. A l'inverse, les nanoparticules de Se(0) produites par Pseudomonas moraviensis stanleyae sont caractérisées par un diamètre plus faible (~ 100 nm).Compte tenu des risques pour l'environnement engendrés par le relargage du Se(0) biogénique, des mesures appropriées doivent être mises en œuvre pour la séparation solide-liquide en utilisant une technologie efficace. Le potentiel de séparation solide-liquide de Se(0) généré a été évaluée par centrifugation, filtration, coagulation-floculation et électrocoagulation. Alors que toutes les approches présentent des rendements de séparation de Se(0) variables, l'électrocoagulation en utilisant des électrodes sacrificielles de fer a montré l'efficacité d'élimination le plus élevée (97%) / Selenium (Se) is a chalcogen element with a narrow window between essentiality and toxicity. The toxicity is mainly related to the chemical speciation that Se undergoes under changing redox conditions. Se oxyanions, namely selenite (Se[IV], SeO32-) and selenate (Se[VI], SeO42-), are water-soluble, bioavailable and toxic. In contrast, elemental selenium, Se(0), is solid and less toxic. Nevertheless, Se(0) nanoparticles are potentially harmful as particulate Se(0) has been reported to be bioavailable to filter feeding mollusks (e.g. bivalves) and fish. Furthermore, Se(0) is prone to re-oxidation to toxic SeO32- and SeO42- when discharged into aquatic ecosystems. Biogenic Se(0) under investigation was produced by the reduction of Na2SeO4 under anaerobic conditions using a mixed bacterial inoculum (anaerobic granular sludge) and through the reduction of Na2SeO3 under aerobic conditions using a pure microbial culture (Pseudomonas moraviensis stanleyae, a novel strain identified and characterized for the first time herein). Both types of Se(0) showed strong colloidal stability within the 2-12 pH range. The colloidal stability is caused by the negatively charged (-15 mV to -30 mV) biopolymer layer covering biogenic Se(0) particles and by their nanometer size. The particle size of Se(0) produced by anaerobic granular sludge ranged between 50 and 300 nm, with an average size of 166 nm. Conversely, the Se(0) particles produced by Pseudomonas moraviensis stanleyae are characterized by a lower diameter (~ 100 nm).The solid-liquid separation potential of Se(0) was assessed by centrifugation, filtration, coagulation-flocculation and electrocoagulation. While all approaches can bring about Se(0) removal from suspension with various degrees of success, electrocoagulation using iron sacrificial electrodes showed the highest removal efficiency (97%). Because biogenic Se(0) is harmful to the environment, appropriate measures must be implemented for the solid-liquid separation using an efficient technology
16

Etude des procédés electrochimiques et biologiques pour le traitement des eaux : application à l'élimination des nitrates et de la carbamazépine / Study of electrochemical and biological processes for the removal of water pollutants : application to nitrates and carbamazepine

Yehya, Tania 18 December 2015 (has links)
L'eau est vitale pour l'existence de tous les organismes vivants, mais cette ressource précieuse est de plus en en plus menacée et polluée à cause de l’augmentation de la demande en eau potable qui résulte à la fois de l’accroissement de la population mondiale mais aussi de l’activité économique tant au niveau de l’agriculture que de l’industrie. La préservation de cette ressource est aujourd'hui l'une des premières préoccupations de la recherche dans le domaine du traitement des eaux. Dans ce travail, l’élimination de deux polluants typiques des activités humaines, les nitrates et la carbamazépine, est étudiée au moyen de méthodes de traitements électrochimiques et biologiques non-conventionnelles. Le travail se concentre d'une part sur l'électrocoagulation (EC) qui associe les avantages d'être non-spécifique et de combiner plusieurs mécanismes de dépollution simultanés (adsorption, électro-oxydation ...); d’autre part, un traitement biologique innovant de faible coût utilisant une algue verte, Ankistrodesmus braunii, a été développé. Enfin, les avantages, limitations et perspectives de ces deux procédés sont comparés à ce qui existe dans la littérature et sont discutés. / Water is vital to the existence of all living organisms, but this valued resource is increasingly being threatened and polluted as human populations and activities grow and demand more water of high quality for domestic purposes and economic activities. Wastewater treatment for resource preservation is nowadays one of the first concerns of research in this field of science. In this work, two typical pollutants from agriculture and domestic activity, Nitrates and Carbamazepine, are quantitatively addressed by non-conventional electrochemical and biological treatment methods. The study focuses, on the one side, on electrocoagulation (EC) that exhibits the advantages to be non-specific and to combine various depollution mechanisms (adsorption, electro-oxidation...) that act simultaneously; on the other side, innovative and low-cost biological treatments using green algae, Ankistrodesmus braunii, are developed. Finally, the respective advantages, limitations and perspectives of these processes are compared to the literature and discussed.
17

Effect of Cell Wall Destruction on Anaerobic Digestion of Algal Biomass

Simpson, Jessica R 20 December 2017 (has links)
Research was conducted using algal biomass obtained from the surface of a secondary clarifier at Bridge City Wastewater Treatment Plant and subsequently sent through an electrochemical (EC) batch reactor at various concentrations. The first objective was to achieve maximum cell wall destruction electrochemically using the EC batch reactor and determine the optimal detention time and voltage/current relationship at which this occurred. The second objective was to subject two algal mediums to anaerobic digestion: the algal medium without electrochemical disinfection and the algal medium after disinfection. Every three days, for 12 days, total solids were measured from each apparatus to determine if cell destruction increased, decreased or did not change the consumption rate of algae by anaerobic bacteria. The consumption rate of algae is directly proportional to the production of methane, which can be used as a source of biofuel.
18

A Flux Declination Predication Model for Nanoparticle-Containing Wastewaters Treated by a Simultaneous Electrocoagulation/Electrofiltration Process

Liu, Chun 15 February 2007 (has links)
A flux declination predication model for nanoparticle-containing wastewaters treated by a simultaneous electrocoagulation/electro- filtration (EC/EF) process was investigated by perceiving blocked membrane pores, concentration polarization layer, cake layer, and applied electric field strength in this study. As nanotechnology develops, it has been used in many applications. However, its environmental impacts have not been extensively studied. Membrane technology is one of the direct and effective treatment methods for removing nanoparticles from wastewater. But nanoparticle-containing wastewater treated by membrane technology would face the problem of membrane fouling. In this study, oxide chemical mechanical polishing (CMP) wastewater, copper CMP wastewater, and nanosized TiO2-containing wastewater were treated by a EC/EF treatment module. In the EC/EF treatment module, iron, aluminum, and stainless steel were respectively selected as th anode and cathode. Polyvinylidene fluoride (PVDF) with a nominal pore size of 0.1 £gm and carbon/Al2O3 tubular inorganic composite membranes with a pore size ranging from 2 to 10 nm were used in this work. In this work, the changes of the relevant performance of membrane with changes of applied pressure (9.8-19.6 kPa), crossflow velocity (0.3-0.5 m/s) and applied electric filed strength (25-233 V/cm) were studied. The simulation results of a modified mathematic model showed that the flux declination would be fitted finely by an exponential function. Experimental results showed that a higher transmembrane pressure would yield a higher cake concentration and a higher crossflow velocity would yield the steady flux quickly. Overall speaking, the flux declination for nanoparticle-containing wastewaters treated by a simulataneous EC/EF process was described properly as a exponential form. The exponential function could simply show the flux declination of different samples treated by different modules in different situations.
19

Performance Evaluation of Treating Chemical Mechanical Polishing Wastewaters by a Simultaneous Electrocoagulation/Electrofiltration Process Using Laboratory-Prepared Tubular Composite Membranes

Chang, Yuan-hao 14 February 2008 (has links)
In this study, two types of chemical mechanical polishing wastewaters (designated Cu-CMP wastewater and mixed-CMP wastewater, respectively) from a wafer fabrication plant was treated by a simultaneous electrocoagulation/electrofiltration (EC/EF) process using laboratory-prepared TiO2/Al2O3 composite membranes. First, tubular membrane supports of Al2O3 were prepared by the extrusion method. Then the slip composed of nanoscale TiO2 (prepared by sol-gel process) and 1 wt% of corn starch was applied on the aforementioned tubular membrane supports by the dip-coating method, followed by sintering to obtain tubular TiO2/Al2O3 composite membranes. These tubular inorganic composite membranes then were incorporated into an EC/EF treatment module for the treatment of CMP wastewaters. The permeate qualities were evaluated. In addition, the effects of different operating modes (i.e., the flow-through mode and recirculation mode) on membrane flux and permeate quality were conducted. Finally, the effects of changing the backwash time and backwash cycle on the membrane flux were also investigated. Experimental results have shown that the slip containing 75 v/v% of TiO2 sol and 25 v/v% of corn starch solution would yield a membrane layer with a thickness of 13 £gm and a pore size of 15 nm. On the CMP wastewater treatment, the removal efficiencies of copper ion and total organic carbon (TOC) were found to increase with the increasing electric field strength. This relationship, however, did not apply to other water quality items. Under the optimal operating conditions of using the recirculation mode, the removal efficiencies for turbidity and TOC for Cu-CMP wastewater were determined to be 98% and 90%, respectively. Similarly, a turbidity of < 1 NTU (a removal efficiency of 99%) was obtained for mixed-CMP wastewater. By using the same optimal operating conditions for the recirculation mode to treat Cu-CMP wastewater, initial fluxes of 300 L/h¡Em2 and 280 L/h¡Em2 were obtained for the flow-through mode and recirculation mode, respectively. The corresponding initial fluxes for mixed-CMP wastewater were 370 L/h¡Em2 and 360 L/h¡Em2, respectively. For the case of the recirculation mode, the removal efficiencies of total solids content, silicon, copper ion, TOC, and turbidity for Cu-CMP wastewater were 71%, 85%, 72%, 90% and 99%, respectively. The corresponding removal efficiencies of 68%, 88%, 78%, 90% and 99%, respectively were determined for the case of the flow-through mode. On the other hand, the removal efficiencies of total solids content, silicon, TOC, and turbidity for mixed-CMP wastewater using the recirculation mode were 76%, 84%, 78% and 99%, respectively; whereas 78%, 86%, 72% and 99%, respectively for the flow-through mode. Based on the above findings, the operating mode is not a significant parameter in influencing the membrane flux and quality. Permeate obtained in this work was found to be recyclable for the use in irrigation and make-up water for cooling towers. Backwashing was found to be important to the membrane flux in this study.
20

Performance Evaluation of Treating Optoelectronic Industrial Wastewaters by a Simultaneous Electrocoagulation/Electrofiltration Process Using Multi-Tubular TiO2/Al2O3 Composite Membranes

Yen, Chia-Heng 27 August 2008 (has links)
Water is essential for life as well as industrial growth. Therefore, this research is mainly to explore the treatment capacity of LCD (Liguid Crystal Display) industrial wastewater recycling by a simultaneous electrocoagulation/electrofiltration (EC/EF) process using laboratory-prepared multi-tubular TiO2/Al2O3 composite membranes. First, tubular membrane supports of Al2O3 were prepared by the extrusion method. Then the slip composed of nanoscale TiO2 (prepared by sol-gel process) was applied on the aforementioned tubular membrane supports by the dip-coating method, followed by sintering to obtain tubular TiO2/Al2O3 composite membranes. Then, two types of LCD industrial wastewaters (designated TFT-LCD wastewater and STN-LCD wastewater, respectively) from different LCD fabrication plants were treated by EC/EF process using TiO2/Al2O3 composite membranes. Moreover, the permeate qualities were evaluated under the recirculation-mode operation. In addition, the effects of different operating parameters (i.e., electric field strength, trans-membrane pressure, and crossflow velocity) on membrane flux and permeate quality were evaluated. Relations of the water quality and the different operation modes (i.e., the recirculation mode, flow-through mode, and secondary treatment mode) were also discussed. Finally, the effects of changing the backwash time and backwash cycle on membrane flux were investigated. In the recirculation mode, both kinds of wastewater achieved a satisfactory organics and anion removal. An average of about 90¢H of COD (Chemical Oxygen Demand) and TKN (Total Kjeldahl Nitrogen) could be removed. For anions (i.e., NO3¡Ð, NO2¡Ð, Cl¡Ð and SO42¡Ð), their removal efficiencies were all over 90%. Furthermore, TOC (Total Organic Carbon) and turbidity also had removal efficiencies of over 98%. When the operation mode was changed from the recirculation mode to flow-through mode, the changes of permeate quality were not obvious. But the cumulative quantity of permeate of the flow-through mode was greater than that of the recirculation mode. As for the experimental result of the secondary treatment mode, the permeate qualities were found to be improved. In this case, an average removal of over 95% of NO3¡Ð, NO2¡Ð, Cl¡Ð, and SO42¡Ð could be obtained. According to experimental results shown above, the treated water could be recycled and reused as the cooling tower make-up water if its pH and conductivity values were reduced. However, these problems could be easily resolved by proper adjustments of pH. Overall speaking, the tubular TiO2/Al2O3 composite membranes and simultaneous EC/EF treatment module employed in this work are capable of treating LCD industrial wastewater for the purpose of reclamation.

Page generated in 0.0578 seconds