Spelling suggestions: "subject:"[een] ELECTROMAGNETISM"" "subject:"[enn] ELECTROMAGNETISM""
411 |
Nonreciprocal Millimeter and Sub-Millimeter Wave Devices Based on Semiconductor MagnetoplasmaAlshannaq, Shadi Sami 27 September 2011 (has links)
No description available.
|
412 |
Design of an Airborne Multi-input Multi-output Radar Emulator Testbed for Ground Moving Target Identification ApplicationsYankevich, Evgeny 31 August 2012 (has links)
No description available.
|
413 |
Efficient Microwave Energy Harvesting Technology and its ApplicationsOlgun, Ugur 17 December 2012 (has links)
No description available.
|
414 |
Magnetic Sensor for Nondestructive Evaluation of Deteriorated Prestressing StrandWade, James David 14 June 2010 (has links)
No description available.
|
415 |
Design and implementation of plasmonic metamaterials and devicesRodríguez Fortuño, Francisco José 18 July 2013 (has links)
La plasmónica es la ciencia que estudia la interacción, a escala nanométrica, entre la luz y los electrones libres de los metales, dando lugar a la propagación de ondas altamente confinadas a su superficie. La plasmónica tiene multitud de aplicaciones en nanotecnología, como son el sensado biológico y químico, espectroscopía, nanolitografía, comunicaciones de banda ultra ancha integradas en chips, nanoantenas para luz, filtrado, y manipulación de señales ópticas, entre muchas otras. Una de las aplicaciones más novedosas es la creación de metamateriales: estructuras artificiales diseñadas para controlar la propagación de la luz, con aplicaciones fascinantes como la lente perfecta o la capa de invisibilidad. La plasmónica y los metamateriales están al frente de la investigación actual en fotónica, gracias al auge de la nanotecnología y la nanociencia, que abre las puertas a una gran cantidad de nuevas aplicaciones.
Esta tesis, desarrollada en el Centro de Tecnología Nanofotónica de Valencia de la UPV, en colaboración con la University of Pennsylvania y King's College London, trata de aportar nuevas ideas, estructuras y dispositivos a los campos de la plasmónica y los metamateriales, tratando de realizar su fabricación y medida experimental cuando sea posible. La tesis no se ciñe a una única aplicación o dispositivo, sino que realiza una extensiva exploración de los diversos sub-campos de la plasmónica en busca de fenómenos novedosos. Los resultados descritos son los siguientes:
En el campo de los metamateriales de índice negativo se presentan dos estructuras: nanocables en forma de U, y guías coaxiales plasmónicas. En el campo del sensado plasmónico se presenta el diseño y la prueba experimental de un sensor se sustancias químicas de altas prestaciones con nanocruces metálicas. También se detallan teóricamente: un novedoso dispositivo para luz lenta e inversión temporal de pulsos basada en metamateriales y cristales fotónicos, un metamaterial para conversión de polarización sintonizable mediante pérdidas, un análogo plasmónico al efecto de levitación Meissner en superconductores y un método de reducción de pérdidas en guías plasmónicas mediante interferencia en guías multimodo. Por último se presenta teórica y experimentalmente un nuevo ejemplo fundamental de interferencia de campo cercano, logrando la excitación unidireccional de modos fotónicos ---ya sean plasmónicos o no--- mediante los campos cercanos de un dipolo circularmente polarizado. / Rodríguez Fortuño, FJ. (2013). Design and implementation of plasmonic metamaterials and devices [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/31207 / Premios Extraordinarios de tesis doctorales
|
416 |
Efficient high-order time domain finite element methods in electromagneticsMarais, Neilen 03 1900 (has links)
Thesis (DEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2009. / The Finite Element Method (FEM) as applied to Computational Electromagnetics (CEM), can beused to solve a large class of Electromagnetics problems with high accuracy and good computational efficiency. For solving wide-band problems time domain solutions are often preferred; while time domain FEM methods are feasible, the Finite Difference Time Domain (FDTD) method is more commonly applied.
The FDTD is popular both for its efficiency and its simplicity. The efficiency of the FDTD stems from the fact that it is both explicit (i.e. no matrices need to be solved) and second order accurate in both time and space. The FDTD has limitations when dealing with certain geometrical shapes and when electrically large structures are analysed. The former limitation is caused by stair-casing in the geometrical modelling, the latter by accumulated dispersion error throughout the mesh.
The FEM can be seen as a general mathematical framework describing families of concrete numerical method implementations; in fact the FDTD can be described as a particular FETD (Finite Element Time
Domain) method. To date the most commonly described FETD CEM methods make use of unstructured, conforming meshes and implicit time stepping schemes. Such meshes deal well with complex geometries while implicit time stepping is required for practical numerical stability. Compared to the FDTD, these methods have the advantages of computational efficiency when dealing with complex geometries and the conceptually straight forward extension to higher orders of accuracy. On the downside, they are much more complicated to implement and less computationally efficient when dealing with regular geometries.
The FDTD and implicit FETD have been combined in an implicit/explicit hybrid. By using the implicit FETD in regions of complex geometry and the FDTD elsewhere the advantages of both are combined. However, previous work only addressed mixed first order (i.e. second order
accurate) methods. For electrically large problems or when very accurate solutions are required, higher order methods are attractive.
In this thesis a novel higher order implicit/explicit FETD method of arbitrary order in space is presented.
A higher order explicit FETD method is implemented using Gauss-Lobatto lumping on regular Cartesian hexahedra with central differencing in time applied to a coupled Maxwell’s equation FEM formulation. This can be seen as a spatially higher order generalisation of the FDTD. A convolution-free perfectly matched layer (PML) method is adapted from the FDTD literature to provide mesh termination. A curl conforming hybrid mesh allowing the interconnection of arbitrary order tetrahedra and hexahedra without using intermediate pyramidal or prismatic elements is presented. An unconditionally stable implicit FETD method is implemented using Newmark-Beta time integration and the standard curl-curl FEM formulation. The implicit/explicit hybrid is constructed on the hybrid hexahedral/tetrahedral mesh using the equivalence between the coupled Maxwell’s formulation with central differences and the Newmark-Beta method with Beta = 0 and the element-wise implicitness method. The accuracy and efficiency of this hybrid is numerically demonstrated using several test-problems.
|
417 |
A comparative analysis of the performance and deployment overhead of parallelized Finite Difference Time Domain (FDTD) algorithms on a selection of high performance multiprocessor computing systemsIlgner, Robert Georg 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: The parallel FDTD method as used in computational electromagnetics is implemented on a variety of
different high performance computing platforms. These parallel FDTD implementations have
regularly been compared in terms of performance or purchase cost, but very little systematic
consideration has been given to how much effort has been used to create the parallel FDTD for a
specific computing architecture. The deployment effort for these platforms has changed
dramatically with time, the deployment time span used to create FDTD implementations in 1980
ranging from months, to the contemporary scenario where parallel FDTD methods can be
implemented on a supercomputer in a matter of hours. This thesis compares the effort required to
deploy the parallel FDTD on selected computing platforms from the constituents that make up the
deployment effort, such as coding complexity and time of coding. It uses the deployment and
performance of the serial FDTD method on a single personal computer as a benchmark and
examines the deployments of the parallel FDTD using different parallelisation techniques. These
FDTD deployments are then analysed and compared against one another in order to determine the
common characteristics between the FDTD implementations on various computing platforms with
differing parallelisation techniques. Although subjective in some instances, these characteristics are
quantified and compared in tabular form, by using the research information created by the parallel
FDTD implementations. The deployment effort is of interest to scientists and engineers considering
the creation or purchase of an FDTD-like solution on a high performance computing platform.
Although the FDTD method has been considered to be a brute force approach to solving
computational electromagnetic problems in the past, this was very probably a factor of the relatively
weak computing platforms which took very long periods to process small model sizes. This thesis will
describe the current implementations of the parallel FDTD method, made up of a combination of
several techniques. These techniques can be easily deployed in a relatively quick time frame on
computing architectures ranging from IBM’s Bluegene/P to the amalgamation of multicore processor
and graphics processing unit, known as an accelerated processing unit. / AFRIKAANSE OPSOMMING: Die parallel Eindige Verskil Tyd Domein (Eng: FDTD) metode word gebruik in numeriese
elektromagnetika en kan op verskeie hoë werkverrigting rekenaars geïmplementeer word. Hierdie
parallele FDTD implementasies word gereeld in terme van werkverrigting of aankoop koste vergelyk,
maar word bitter min sistematies oorweeg in terme van die hoeveelheid moeite wat dit geverg het
om die parallele FDTD vir 'n spesifieke rekenaar argitektuur te skep. Mettertyd het die moeite om
die platforms te ontplooi dramaties verander, in the 1980's het die ontplooings tyd tipies maande
beloop waarteenoor dit vandag binne 'n kwessie van ure gedoen kan word. Hierdie tesis vergelyk die
inspanning wat nodig is om die parallelle FDTD op geselekteerde rekenaar platforms te ontplooi
deur te kyk na faktore soos die kompleksiteit van kodering en die tyd wat dit vat om 'n kode te
implementeer. Die werkverrigting van die serie FDTD metode, geïmplementeer op 'n enkele
persoonlike rekenaar word gebruik as 'n maatstaf om die ontplooing van die parallel FDTD met
verskeie parallelisasie tegnieke te evalueer. Deur hierdie FDTD ontplooiings met verskillende
parallelisasie tegnieke te ontleed en te vergelyk word die gemeenskaplike eienskappe bepaal vir
verskeie rekenaar platforms. Alhoewel sommige gevalle subjektief is, is hierdie eienskappe
gekwantifiseer en vergelyk in tabelvorm deur gebruik te maak van die navorsings inligting geskep
deur die parallel FDTD implementasies. Die ontplooiings moeite is belangrik vir wetenskaplikes en
ingenieurs wat moet besluit tussen die ontwikkeling of aankoop van 'n FDTD tipe oplossing op 'n höe
werkverrigting rekenaar. Hoewel die FDTD metode in die verlede beskou was as 'n brute krag
benadering tot die oplossing van elektromagnetiese probleme was dit waarskynlik weens die
relatiewe swak rekenaar platforms wat lank gevat het om klein modelle te verwerk. Hierdie tesis
beskryf die moderne implementering van die parallele FDTD metode, bestaande uit 'n kombinasie
van verskeie tegnieke. Hierdie tegnieke kan maklik in 'n relatiewe kort tydsbestek ontplooi word op
rekenaar argitekture wat wissel van IBM se BlueGene / P tot die samesmelting van multikern
verwerkers en grafiese verwerkings eenhede, beter bekend as 'n versnelde verwerkings eenheid.
|
418 |
GPU acceleration of matrix-based methods in computational electromagneticsLezar, Evan 03 1900 (has links)
Thesis (PhD (Electrical and Electronic Engineering))--University of Stellenbosch, 2011. / ENGLISH ABSTRACT: This work considers the acceleration of matrix-based computational electromagnetic (CEM)
techniques using graphics processing units (GPUs). These massively parallel processors have
gained much support since late 2006, with software tools such as CUDA and OpenCL greatly
simplifying the process of harnessing the computational power of these devices. As with any
advances in computation, the use of these devices enables the modelling of more complex problems,
which in turn should give rise to better solutions to a number of global challenges faced
at present.
For the purpose of this dissertation, CUDA is used in an investigation of the acceleration
of two methods in CEM that are used to tackle a variety of problems. The first of these is the
Method of Moments (MOM) which is typically used to model radiation and scattering problems,
with the latter begin considered here. For the CUDA acceleration of the MOM presented here,
the assembly and subsequent solution of the matrix equation associated with the method are
considered. This is done for both single and double precision
oating point matrices.
For the solution of the matrix equation, general dense linear algebra techniques are used,
which allow for the use of a vast expanse of existing knowledge on the subject. This also means
that implementations developed here along with the results presented are immediately applicable
to the same wide array of applications where these methods are employed.
Both the assembly and solution of the matrix equation implementations presented result in
signi cant speedups over multi-core CPU implementations, with speedups of up to 300x and
10x, respectively, being measured. The implementations presented also overcome one of the
major limitations in the use of GPUs as accelerators (that of limited memory capacity) with
problems up to 16 times larger than would normally be possible being solved.
The second matrix-based technique considered is the Finite Element Method (FEM), which
allows for the accurate modelling of complex geometric structures including non-uniform dielectric
and magnetic properties of materials, and is particularly well suited to handling bounded
structures such as waveguide. In this work the CUDA acceleration of the cutoff and dispersion
analysis of three waveguide configurations is presented. The modelling of these problems using
an open-source software package, FEniCS, is also discussed.
Once again, the problem can be approached from a linear algebra perspective, with the
formulation in this case resulting in a generalised eigenvalue (GEV) problem. For the problems
considered, a total solution speedup of up to 7x is measured for the solution of the generalised
eigenvalue problem, with up to 22x being attained for the solution of the standard eigenvalue
problem that forms part of the GEV problem. / AFRIKAANSE OPSOMMING: In hierdie werkstuk word die versnelling van matriksmetodes in numeriese elektromagnetika
(NEM) deur die gebruik van grafiese verwerkingseenhede (GVEe) oorweeg. Die gebruik van
hierdie verwerkingseenhede is aansienlik vergemaklik in 2006 deur sagteware pakette soos CUDA
en OpenCL. Hierdie toestelle, soos ander verbeterings in verwerkings vermoe, maak dit moontlik
om meer komplekse probleme op te los. Hierdie stel wetenskaplikes weer in staat om globale
uitdagings beter aan te pak.
In hierdie proefskrif word CUDA gebruik om ondersoek in te stel na die versnelling van twee
metodes in NEM, naamlik die Moment Metode (MOM) en die Eindige Element Metode (EEM).
Die MOM word tipies gebruik om stralings- en weerkaatsingsprobleme op te los. Hier word slegs
na die weerkaatsingsprobleme gekyk. CUDA word gebruik om die opstel van die MOM matriks
en ook die daaropvolgende oplossing van die matriksvergelyking wat met die metode gepaard
gaan te bespoedig.
Algemene digte lineere algebra tegnieke word benut om die matriksvergelykings op te los.
Dit stel die magdom bestaande kennis in die vagebied beskikbaar vir die oplossing, en gee ook
aanleiding daartoe dat enige implementasies wat ontwikkel word en resultate wat verkry word
ook betrekking het tot 'n wye verskeidenheid probleme wat die lineere algebra metodes gebruik.
Daar is gevind dat beide die opstelling van die matriks en die oplossing van die matriksvergelyking
aansienlik vinniger is as veelverwerker SVE implementasies. 'n Verselling van tot 300x
en 10x onderkeidelik is gemeet vir die opstel en oplos fases. Die hoeveelheid geheue beskikbaar
tot die GVE is een van die belangrike beperkinge vir die gebruik van GVEe vir groot probleme.
Hierdie beperking word hierin oorkom en probleme wat selfs 16 keer groter is as die GVE se
beskikbare geheue word geakkommodeer en suksesvol opgelos.
Die Eindige Element Metode word op sy beurt gebruik om komplekse geometriee asook nieuniforme
materiaaleienskappe te modelleer. Die EEM is ook baie geskik om begrensde strukture
soos golfgeleiers te hanteer. Hier word CUDA gebruik of om die afsny- en dispersieanalise van
drie gol
eierkonfigurasies te versnel. Die implementasie van hierdie probleme word gedoen deur
'n versameling oopbronkode wat bekend staan as FEniCS, wat ook hierin bespreek word.
Die probleme wat ontstaan in die EEM kan weereens vanaf 'n lineere algebra uitganspunt
benader word. In hierdie geval lei die formulering tot 'n algemene eiewaardeprobleem. Vir die
gol
eier probleme wat ondersoek word is gevind dat die algemene eiewaardeprobleem met tot 7x
versnel word. Die standaard eiewaardeprobleem wat 'n stap is in die oplossing van die algemene
eiewaardeprobleem is met tot 22x versnel.
|
419 |
Finite element tearing and interconnecting for the electromagnetic vector wave equation in two dimensionsMarchand, Renier Gustav 03 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2007. / The finite element tearing and interconnect(FETI) domain decomposition(DD) method
is investigated in terms of the 2D transverse electric(TEz) finite element method(FEM).
The FETI is for the first time rigorously derived using the weighted residual framework
from which important insights are gained. The FETI is used in a novel way to implement
a total-/scattered field decomposition and is shown to give excellent results. The FETI is
newly formulated for the time domain(FETI-TD), its feasibility is tested and it is further
formulated and tested for implementation on a distributed computer architecture.
|
420 |
Modélisations numériques temporelles des CRBM en compatibilité électromagnétiques. Contributions aux schémas volumes finisLalléchère, Sébastien 12 December 2006 (has links) (PDF)
Cette thèse concerne la modélisation numérique de Chambres Réverbérantes à Brassage de Modes (CRBM). Cet outil est utilisé pour les tests en Compatibilité ElectroMagnétique (CEM) de systèmes électroniques variés. L'utilisation de modèles temporel, géométrique et électronique particuliers a été motivée en s'appuyant sur un maximun de paramètres réels. La prise en compte naturelle par la méthode des Volumes Finis dans le Domaine Temporel (VFDT) de géométries complexes autorise la modélisation conforme des équipements rencontrés en CRBM. L'intégration réaliste des pertes est assurée via un filtre temporel spécifique. Ces travaux ont permis de quantifier au mieux les effets de la dissipation numérique VFDT : une technique temporelle hybride Différences Finies/ Volumes Finis adaptée est ainsi proposée. Enfin, différentes améliorations numériques permettent d'optimiser les développements actuels des simulations temporelles en chambre réverbérante sont présentées.
|
Page generated in 0.0441 seconds