Spelling suggestions: "subject:"[een] ELLIPTIC CURVE"" "subject:"[enn] ELLIPTIC CURVE""
21 |
Certain Diagonal Equations over Finite FieldsSze, Christopher 29 May 2009 (has links)
Let Fqt be the finite field with qt elements and let F*qt be its multiplicative group. We study the diagonal equation axq−1 + byq−1 = c, where a,b and c ∈ F*qt. This equation can be written as xq−1+αyq−1 = β, where α, β ∈ F ∗ q t . Let Nt(α, β) denote the number of solutions (x,y) ∈ F*qt × F*qt of xq−1 + αyq−1 = β and I(r; a, b) be the number of monic irreducible polynomials f ∈ Fq[x] of degree r with f(0) = a and f(1) = b. We show that Nt(α, β) can be expressed in terms of I(r; a, b), where r | t and a, b ∈ F*q are related to α and β. A recursive formula for I(r; a, b) will be given and we illustrate this by computing I(r; a, b) for 2 ≤ r ≤ 4. We also show that N3(α, β) can be expressed in terms of the number of monic irreducible cubic polynomials over Fq with prescribed trace and norm. Consequently, N3(α, β) can be expressed in terms of the number of rational points on a certain elliptic curve. We give a proof that given any a, b ∈ F*q and integer r ≥ 3, there always exists a monic irreducible polynomial f ∈ Fq[x] of degree r such that f(0) = a and f(1) = b. We also use the result on N2(α, β) to construct a new family of planar functions.
|
22 |
Bit Serial Systolic Architectures for Multiplicative Inversion and Division over GF(2<sup>m</sup>)Daneshbeh, Amir January 2005 (has links)
Systolic architectures are capable of achieving high throughput by maximizing pipelining and by eliminating global data interconnects. Recursive algorithms with regular data flows are suitable for systolization. The computation of multiplicative inversion using algorithms based on EEA (Extended Euclidean Algorithm) are particularly suitable for systolization. Implementations based on EEA present a high degree of parallelism and pipelinability at bit level which can be easily optimized to achieve local data flow and to eliminate the global interconnects which represent most important bottleneck in todays sub-micron design process. The net result is to have high clock rate and performance based on efficient systolic architectures.
This thesis examines high performance but also scalable implementations of multiplicative inversion or field division over Galois fields <i>GF</i>(2<i><sup>m</sup></i>) in the specific case of cryptographic applications where field dimension <i>m</i> may be very large (greater than 400) and either <i>m</i> or defining irreducible polynomial may vary. For this purpose, many inversion schemes with different basis representation are studied and most importantly variants of EEA and binary (Stein's) GCD computation implementations are reviewed. A set of common as well as contrasting characteristics of these variants are discussed. As a result a generalized and optimized variant of EEA is proposed which can compute division, and multiplicative inversion as its subset, with divisor in either <i>polynomial</i> or <i>triangular</i> basis representation. Further results regarding Hankel matrix formation for double-basis inversion is provided. The validity of using the same architecture to compute field division with polynomial or triangular basis representation is proved.
Next, a scalable unidirectional bit serial systolic array implementation of this proposed variant of EEA is implemented. Its complexity measures are defined and these are compared against the best known architectures. It is shown that assuming the requirements specified above, this proposed architecture may achieve a higher clock rate performance w. r. t. other designs while being more flexible, reliable and with minimum number of inter-cell interconnects.
The main contribution at system level architecture is the substitution of all counter or adder/subtractor elements with a simpler distributed and free of carry propagation delays structure. Further a novel restoring mechanism for result sequences of EEA is proposed using a double delay element implementation.
Finally, using this systolic architecture a CMD (Combined Multiplier Divider) datapath is designed which is used as the core of a novel systolic elliptic curve processor. This EC processor uses affine coordinates to compute scalar point multiplication which results in having a very small control unit and negligible with respect to the datapath for all practical values of <i>m</i>. The throughput of this EC based on this bit serial systolic architecture is comparable with designs many times larger than itself reported previously.
|
23 |
High Performance Elliptic Curve Cryptographic Co-processorLutz, Jonathan January 2003 (has links)
In FIPS 186-2, NIST recommends several finite fields to be used in the elliptic curve digital signature algorithm (ECDSA). Of the ten recommended finite fields, five are binary extension fields with degrees ranging from 163 to 571. The fundamental building block of the ECDSA, like any ECC based protocol, is elliptic curve scalar multiplication. This operation is also the most computationally intensive. In many situations it may be desirable to accelerate the elliptic curve scalar multiplication with specialized hardware.
In this thesis a high performance elliptic curve processor is developed which is optimized for the NIST binary fields. The architecture is built from the bottom up starting with the field arithmetic units. The architecture uses a field multiplier capable of performing a field multiplication over the extension field with degree 163 in 0. 060 microseconds. Architectures for squaring and inversion are also presented. The co-processor uses Lopez and Dahab's projective coordinate system and is optimized specifically for Koblitz curves. A prototype of the processor has been implemented for the binary extension field with degree 163 on a Xilinx XCV2000E FPGA. The prototype runs at 66 MHz and performs an elliptic curve scalar multiplication in 0. 233 msec on a generic curve and 0. 075 msec on a Koblitz curve.
|
24 |
Finite Field Multiplier Architectures for Cryptographic ApplicationsEl-Gebaly, Mohamed January 2000 (has links)
Security issues have started to play an important role in the wireless communication and computer networks due to the migration of commerce practices to the electronic medium. The deployment of security procedures requires the implementation of cryptographic algorithms. Performance has always been one of the most critical issues of a cryptographic function, which determines its effectiveness. Among those cryptographic algorithms are the elliptic curve cryptosystems which use the arithmetic of finite fields. Furthermore, fields of characteristic two are preferred since they provide carry-free arithmetic and at the same time a simple way to represent field elements on current processor architectures. Multiplication is a very crucial operation in finite field computations. In this contribution, we compare most of the multiplier architectures found in the literature to clarify the issue of choosing a suitable architecture for a specific application. The importance of the measuring the energy consumption in addition to the conventional measures for energy-critical applications is also emphasized. A new parallel-in serial-out multiplier based on all-one polynomials (AOP) using the shifted polynomial basis of representation is presented. The proposed multiplier is area efficient for hardware realization. Low hardware complexity is advantageous for implementation in constrained environments such as smart cards. Architecture of an elliptic curve coprocessor has been developed using the proposed multiplier. The instruction set architecture has been also designed. The coprocessor has been simulated using VHDL to very the functionality. The coprocessor is capable of performing the scalar multiplication operation over elliptic curves. Point doubling and addition procedures are hardwired inside the coprocessor to allow for faster operation.
|
25 |
Bit Serial Systolic Architectures for Multiplicative Inversion and Division over GF(2<sup>m</sup>)Daneshbeh, Amir January 2005 (has links)
Systolic architectures are capable of achieving high throughput by maximizing pipelining and by eliminating global data interconnects. Recursive algorithms with regular data flows are suitable for systolization. The computation of multiplicative inversion using algorithms based on EEA (Extended Euclidean Algorithm) are particularly suitable for systolization. Implementations based on EEA present a high degree of parallelism and pipelinability at bit level which can be easily optimized to achieve local data flow and to eliminate the global interconnects which represent most important bottleneck in todays sub-micron design process. The net result is to have high clock rate and performance based on efficient systolic architectures.
This thesis examines high performance but also scalable implementations of multiplicative inversion or field division over Galois fields <i>GF</i>(2<i><sup>m</sup></i>) in the specific case of cryptographic applications where field dimension <i>m</i> may be very large (greater than 400) and either <i>m</i> or defining irreducible polynomial may vary. For this purpose, many inversion schemes with different basis representation are studied and most importantly variants of EEA and binary (Stein's) GCD computation implementations are reviewed. A set of common as well as contrasting characteristics of these variants are discussed. As a result a generalized and optimized variant of EEA is proposed which can compute division, and multiplicative inversion as its subset, with divisor in either <i>polynomial</i> or <i>triangular</i> basis representation. Further results regarding Hankel matrix formation for double-basis inversion is provided. The validity of using the same architecture to compute field division with polynomial or triangular basis representation is proved.
Next, a scalable unidirectional bit serial systolic array implementation of this proposed variant of EEA is implemented. Its complexity measures are defined and these are compared against the best known architectures. It is shown that assuming the requirements specified above, this proposed architecture may achieve a higher clock rate performance w. r. t. other designs while being more flexible, reliable and with minimum number of inter-cell interconnects.
The main contribution at system level architecture is the substitution of all counter or adder/subtractor elements with a simpler distributed and free of carry propagation delays structure. Further a novel restoring mechanism for result sequences of EEA is proposed using a double delay element implementation.
Finally, using this systolic architecture a CMD (Combined Multiplier Divider) datapath is designed which is used as the core of a novel systolic elliptic curve processor. This EC processor uses affine coordinates to compute scalar point multiplication which results in having a very small control unit and negligible with respect to the datapath for all practical values of <i>m</i>. The throughput of this EC based on this bit serial systolic architecture is comparable with designs many times larger than itself reported previously.
|
26 |
High Performance Elliptic Curve Cryptographic Co-processorLutz, Jonathan January 2003 (has links)
In FIPS 186-2, NIST recommends several finite fields to be used in the elliptic curve digital signature algorithm (ECDSA). Of the ten recommended finite fields, five are binary extension fields with degrees ranging from 163 to 571. The fundamental building block of the ECDSA, like any ECC based protocol, is elliptic curve scalar multiplication. This operation is also the most computationally intensive. In many situations it may be desirable to accelerate the elliptic curve scalar multiplication with specialized hardware.
In this thesis a high performance elliptic curve processor is developed which is optimized for the NIST binary fields. The architecture is built from the bottom up starting with the field arithmetic units. The architecture uses a field multiplier capable of performing a field multiplication over the extension field with degree 163 in 0. 060 microseconds. Architectures for squaring and inversion are also presented. The co-processor uses Lopez and Dahab's projective coordinate system and is optimized specifically for Koblitz curves. A prototype of the processor has been implemented for the binary extension field with degree 163 on a Xilinx XCV2000E FPGA. The prototype runs at 66 MHz and performs an elliptic curve scalar multiplication in 0. 233 msec on a generic curve and 0. 075 msec on a Koblitz curve.
|
27 |
Finite Field Multiplier Architectures for Cryptographic ApplicationsEl-Gebaly, Mohamed January 2000 (has links)
Security issues have started to play an important role in the wireless communication and computer networks due to the migration of commerce practices to the electronic medium. The deployment of security procedures requires the implementation of cryptographic algorithms. Performance has always been one of the most critical issues of a cryptographic function, which determines its effectiveness. Among those cryptographic algorithms are the elliptic curve cryptosystems which use the arithmetic of finite fields. Furthermore, fields of characteristic two are preferred since they provide carry-free arithmetic and at the same time a simple way to represent field elements on current processor architectures. Multiplication is a very crucial operation in finite field computations. In this contribution, we compare most of the multiplier architectures found in the literature to clarify the issue of choosing a suitable architecture for a specific application. The importance of the measuring the energy consumption in addition to the conventional measures for energy-critical applications is also emphasized. A new parallel-in serial-out multiplier based on all-one polynomials (AOP) using the shifted polynomial basis of representation is presented. The proposed multiplier is area efficient for hardware realization. Low hardware complexity is advantageous for implementation in constrained environments such as smart cards. Architecture of an elliptic curve coprocessor has been developed using the proposed multiplier. The instruction set architecture has been also designed. The coprocessor has been simulated using VHDL to very the functionality. The coprocessor is capable of performing the scalar multiplication operation over elliptic curves. Point doubling and addition procedures are hardwired inside the coprocessor to allow for faster operation.
|
28 |
On Error Detection and Recovery in Elliptic Curve CryptosystemsAlkhoraidly, Abdulaziz Mohammad January 2011 (has links)
Fault analysis attacks represent a serious threat to a wide range of cryptosystems including those based on elliptic curves. With the variety and demonstrated practicality of these attacks, it is essential for cryptographic implementations to handle different types of errors properly and securely. In this work, we address some aspects of error detection and recovery in elliptic curve cryptosystems. In particular, we discuss the problem of wasteful computations performed between the occurrence of an error and its detection and propose solutions based on frequent validation to reduce that waste. We begin by presenting ways to select the validation frequency in order to minimize various performance criteria including the average and worst-case costs and the reliability threshold. We also provide solutions to reduce the sensitivity of the validation frequency to variations in the statistical error model and its parameters. Then, we present and discuss adaptive error recovery and illustrate its advantages in terms of low sensitivity to the error model and reduced variance of the resulting overhead especially in the presence of burst errors. Moreover, we use statistical inference to evaluate and fine-tune the selection of the adaptive policy. We also address the issue of validation testing cost and present a collection of coherency-based, cost-effective tests. We evaluate variations of these tests in terms of cost and error detection effectiveness and provide infective and reduced-cost, repeated-validation variants. Moreover, we use coherency-based tests to construct a combined-curve countermeasure that avoids the weaknesses of earlier related proposals and provides a flexible trade-off between cost and effectiveness.
|
29 |
Energy-Efficient Scalable Serial-Parallel Multiplication Architecture for Elliptic Curve CryptosystemSu, Chuan-Shen 25 July 2012 (has links)
In asymmetric cryptosystems, an important advantage of Elliptic Curve Cryptosystem (ECC) is the shorter key lengths than other cryptosystems. It can provide a level of security when the bit length over than 160 bits. So it has become a popular public key cryptographic system in recent year.
Multiplier needs to run many times in scalar multiplication and it plays an essential role in ECC. Since the registers in multiplier are shifted every iteration, it will consume a lot of power in the computing process. So in this thesis, we propose five methods to save multiplication¡¦s energy consumption based on a scalable serial-parallel algorithm[1]. The first method is to design a low-power shift-register by modifying shift-register B to reduce the frequency of registers shifted. The second method is to use a frequency divider circuit. It can make registers to access a value every two clock cycles by modifying RA units. The third method is to introduce the gated clock circuit, and the clock signal of register will be disabled if its value is the same. The fourth method is to skip redundant operations and it can decrease the number of clock cycles for completing a multiplication operation. The last method raises multiplier¡¦s throughput by modifying RA units. The former three methods focus on low-power design, and the latter two methods emphasize on improving performance. Reducing power consumption and improving performance will save multiplication¡¦s energy consumption. Finally, we propose a Half Cycles schedule to raise scalar multiplication¡¦s performance. It is based on Montgomery scalar multiplication algorithm with projective coordinate[22][26].
For the hardware implementation, TSMC 0.13um library is employed and all modules are organized in a hierarchy structure. The implementation results show that the proposed multipliers have less energy consumption than traditional multiplier. It can get 5% ~ 24% energy saving. For Montgomery scalar multiplication, it can also reduce 12% ~ 47% energy consumption and is suitable for portable electronic products because its low area complexity and low energy.
|
30 |
On The Representation Of Finite FieldsAkleylek, Sedat 01 December 2010 (has links) (PDF)
The representation of field elements has a great impact on the performance of the finite field arithmetic. In this thesis, we give modified version of redundant representation which works for any finite fields of arbitrary characteristics to design arithmetic circuits with small complexity. Using our modified redundant representation, we improve many of the complexity values. We then propose new representations as an alternative way to represent finite fields of characteristic two by using Charlier and Hermite polynomials. We show that multiplication in these representations can be achieved with subquadratic space complexity. Charlier and Hermite representations enable us to find binomial, trinomial or quadranomial irreducible polynomials which allows us faster modular reduction over binary fields when there is no desirable such low weight irreducible polynomial in other representations. These representations are very interesting for the NIST and SEC recommended binary fields GF(2^{283}) and GF(2^{571}) since there is no optimal normal basis (ONB) for the corresponding extensions. It is also shown that in some cases the proposed representations have better space complexity even if there exists an ONB for the corresponding extension.
|
Page generated in 0.0497 seconds