• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 25
  • 3
  • 3
  • 1
  • Tagged with
  • 113
  • 113
  • 71
  • 60
  • 44
  • 29
  • 21
  • 17
  • 16
  • 16
  • 15
  • 14
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Análise integrada do sistema energético urbano: estudo de caso da cidade de Porto Alegre / Integrated analysis of the urban energy system: case study of the city of Porto Alegre

Weber, Natália de Assis Brasil 20 March 2017 (has links)
Nos dias atuais as cidades são o epicentro de uma transformação energética, pois, são elas as principais consumidoras de matéria e energia. Energia fornecida, em sua maioria, através de um sistema convencional, centralizado e ineficiente. Dessa forma, são nos centros urbanos que poderão ser melhor implementadas estratégicas de eficiência energética e conservação de energia. Contudo, antes que os municípios se comprometam com novas iniciativas políticas e investimentos, o primeiro passo é melhorar a compreensão do sistema energético local. Por conseguinte, o objetivo central desta pesquisa é compreender de forma mais integrada o sistema energético de uma cidade através da aplicação de uma metodologia de análise. O município escolhido como estudo de caso é Porto Alegre, por ser uma cidade que se comprometeu em estabelecer mudanças para reduzir as emissões dos gases de efeito estufa, contudo, sem ainda possuir um plano de ação definido. A metodologia do trabalho é qualitativa e quantitativa e foi dividida em três etapas principais: a revisão bibliográfica, o desenvolvimento da metodologia de análise do sistema energético urbano e a aplicação da metodologia proposta. A revisão bibliográfica forneceu a base teórica para o desenvolvimento da metodologia de análise do sistema energético urbano. Esta metodologia prevê o levantamento de dados diversos que se complementam e, dessa forma, possibilitam uma análise integrada e mais aprofundada do sistema energético da cidade. Para tanto, a análise do sistema energético foi dividida em três etapas: caracterização municipal, análise da demanda de energia e levantamento da oferta das principais fontes energéticas locais. Para esta última etapa, visando um exercício concreto de avaliação, especificou-se o potencial de produção de eletricidade através do recurso solar. Os principais resultados da análise do sistema energético de Porto Alegre, entre os anos 2005 e 2014, destacam que o consumo de energia cresceu oito vezes mais que o aumento populacional e menos que a metade do PIB da cidade. Igualmente, no mesmo período, a frota de veículos, assim como o consumo de gasolina, aumentou 13 vezes mais que a população. Entre os setores econômicos analisados o setor transporte foi responsável, em 2014, pelo consumo de 60% da demanda final de energia da cidade. Nesse ano, a fonte de energia mais consumida foi a eletricidade, representando 28,1% do consumo final. Ainda analisando os dados de 2014, verificou-se que o consumo de eletricidade per capita de Porto Alegre pode ser considerado alto, 2,58 MWh/per capita, se igualando ao do Brasil e ao de alguns países desenvolvidos. Em relação ao potencial de produção de eletricidade, a partir da fonte solar, estimou-se um potencial de 2.549 GWh/ano, considerando todo o território da cidade, e de 772 GWh, considerando apenas o território que possuem edificações, aproximadamente 30% da cidade. Isto significa que se todos os consumidores residenciais e comerciais produzissem sua própria energia poderiam ser gerados 2.892 GWh por ano em Porto Alegre. Essa energia seria capaz de suprir 75,8% de toda a demanda de eletricidade da cidade em 2014. Ao final, ressaltou-se a importância de articular o planejamento energético ao planejamento urbano e ao plano de mobilidade urbana, uma vez que o sistema energético urbano está relacionado com os demais. / Nowadays cities at are the epicenter of an energetic transformation. Today, they are the main consumers of matter and energy. Most of that energy supplied through a conventional, centralized and inefficient system. Thus, it is in urban centers that strategic energy efficiency and energy conservation can be better implemented. However, before municipalities commit to new policy initiatives and investments, the first step is to improve understanding of the local energy system. Therefore, the central objective of this research is to understand in a more integrated way the energy system of a city through the application of a methodology of analysis of an urban energy system. The municipality chosen as a case study is Porto Alegre. It was chosen because is a city that has committed itself to establishing changes to reduce emissions of greenhouse gases, however, it does not have a defined plan of action. The methodology of the work is qualitative and quantitative and was divided into three main stages, among them: literature review, development of the methodology of urban energy system analysis, and application of the proposed methodology. The literature review provided the theoretical basis for the development of the methodology of analysis of the urban energy system. This methodology determines the collection of diverse data that complement each other and, thus, enable an integrated and more in-depth analysis of the city\'s energy system. In order to do so, the analysis of the energy system was divided into three stages: municipal characterization, analysis of the energy demand and survey of the supply of the main local energy sources. For this last stage, aiming a specific evaluation exercise, was specified the potential of electricity production through the solar resource.The main results of the analysis of the energy system of Porto Alegre, between 2005 and 2014, highlight that energy consumption grew eight times more than the population increase and less than half of the city\'s GDP. Also, in the same period, the car fleet grew 13 times more than the population. Among the economic sectors analyzed, the transportation sector was responsible for the consumption of 60% of the final energy demand of the city, in 2014. In that year, the most consumed energy source was electricity, representing 28.1% of final consumption. The per capita electricity consumption in Porto Alegre was considered high, 2.58 MWh/per capita, which equals that of Brazil and some developed countries. Regarding the potential for electricity production, it was determined a potential of 2,549 GWh/year (considering the entire territory of the city), and 772 GWh (considering only the territory that have buildings, approximately 30% of the city). This means that if all residential and commercial consumers produced their own energy could generate 2,892 GWh per year in Porto Alegre. This energy would be able to supply 75.8% of all city electricity demand. In the end, it was emphasized the importance of unifying the energy planning to the urban planning and to the urban mobility plan, since the urban energy system is related to both.
12

Análise integrada do sistema energético urbano: estudo de caso da cidade de Porto Alegre / Integrated analysis of the urban energy system: case study of the city of Porto Alegre

Natália de Assis Brasil Weber 20 March 2017 (has links)
Nos dias atuais as cidades são o epicentro de uma transformação energética, pois, são elas as principais consumidoras de matéria e energia. Energia fornecida, em sua maioria, através de um sistema convencional, centralizado e ineficiente. Dessa forma, são nos centros urbanos que poderão ser melhor implementadas estratégicas de eficiência energética e conservação de energia. Contudo, antes que os municípios se comprometam com novas iniciativas políticas e investimentos, o primeiro passo é melhorar a compreensão do sistema energético local. Por conseguinte, o objetivo central desta pesquisa é compreender de forma mais integrada o sistema energético de uma cidade através da aplicação de uma metodologia de análise. O município escolhido como estudo de caso é Porto Alegre, por ser uma cidade que se comprometeu em estabelecer mudanças para reduzir as emissões dos gases de efeito estufa, contudo, sem ainda possuir um plano de ação definido. A metodologia do trabalho é qualitativa e quantitativa e foi dividida em três etapas principais: a revisão bibliográfica, o desenvolvimento da metodologia de análise do sistema energético urbano e a aplicação da metodologia proposta. A revisão bibliográfica forneceu a base teórica para o desenvolvimento da metodologia de análise do sistema energético urbano. Esta metodologia prevê o levantamento de dados diversos que se complementam e, dessa forma, possibilitam uma análise integrada e mais aprofundada do sistema energético da cidade. Para tanto, a análise do sistema energético foi dividida em três etapas: caracterização municipal, análise da demanda de energia e levantamento da oferta das principais fontes energéticas locais. Para esta última etapa, visando um exercício concreto de avaliação, especificou-se o potencial de produção de eletricidade através do recurso solar. Os principais resultados da análise do sistema energético de Porto Alegre, entre os anos 2005 e 2014, destacam que o consumo de energia cresceu oito vezes mais que o aumento populacional e menos que a metade do PIB da cidade. Igualmente, no mesmo período, a frota de veículos, assim como o consumo de gasolina, aumentou 13 vezes mais que a população. Entre os setores econômicos analisados o setor transporte foi responsável, em 2014, pelo consumo de 60% da demanda final de energia da cidade. Nesse ano, a fonte de energia mais consumida foi a eletricidade, representando 28,1% do consumo final. Ainda analisando os dados de 2014, verificou-se que o consumo de eletricidade per capita de Porto Alegre pode ser considerado alto, 2,58 MWh/per capita, se igualando ao do Brasil e ao de alguns países desenvolvidos. Em relação ao potencial de produção de eletricidade, a partir da fonte solar, estimou-se um potencial de 2.549 GWh/ano, considerando todo o território da cidade, e de 772 GWh, considerando apenas o território que possuem edificações, aproximadamente 30% da cidade. Isto significa que se todos os consumidores residenciais e comerciais produzissem sua própria energia poderiam ser gerados 2.892 GWh por ano em Porto Alegre. Essa energia seria capaz de suprir 75,8% de toda a demanda de eletricidade da cidade em 2014. Ao final, ressaltou-se a importância de articular o planejamento energético ao planejamento urbano e ao plano de mobilidade urbana, uma vez que o sistema energético urbano está relacionado com os demais. / Nowadays cities at are the epicenter of an energetic transformation. Today, they are the main consumers of matter and energy. Most of that energy supplied through a conventional, centralized and inefficient system. Thus, it is in urban centers that strategic energy efficiency and energy conservation can be better implemented. However, before municipalities commit to new policy initiatives and investments, the first step is to improve understanding of the local energy system. Therefore, the central objective of this research is to understand in a more integrated way the energy system of a city through the application of a methodology of analysis of an urban energy system. The municipality chosen as a case study is Porto Alegre. It was chosen because is a city that has committed itself to establishing changes to reduce emissions of greenhouse gases, however, it does not have a defined plan of action. The methodology of the work is qualitative and quantitative and was divided into three main stages, among them: literature review, development of the methodology of urban energy system analysis, and application of the proposed methodology. The literature review provided the theoretical basis for the development of the methodology of analysis of the urban energy system. This methodology determines the collection of diverse data that complement each other and, thus, enable an integrated and more in-depth analysis of the city\'s energy system. In order to do so, the analysis of the energy system was divided into three stages: municipal characterization, analysis of the energy demand and survey of the supply of the main local energy sources. For this last stage, aiming a specific evaluation exercise, was specified the potential of electricity production through the solar resource.The main results of the analysis of the energy system of Porto Alegre, between 2005 and 2014, highlight that energy consumption grew eight times more than the population increase and less than half of the city\'s GDP. Also, in the same period, the car fleet grew 13 times more than the population. Among the economic sectors analyzed, the transportation sector was responsible for the consumption of 60% of the final energy demand of the city, in 2014. In that year, the most consumed energy source was electricity, representing 28.1% of final consumption. The per capita electricity consumption in Porto Alegre was considered high, 2.58 MWh/per capita, which equals that of Brazil and some developed countries. Regarding the potential for electricity production, it was determined a potential of 2,549 GWh/year (considering the entire territory of the city), and 772 GWh (considering only the territory that have buildings, approximately 30% of the city). This means that if all residential and commercial consumers produced their own energy could generate 2,892 GWh per year in Porto Alegre. This energy would be able to supply 75.8% of all city electricity demand. In the end, it was emphasized the importance of unifying the energy planning to the urban planning and to the urban mobility plan, since the urban energy system is related to both.
13

Distributed Bioenergy Systems For Expanding Rural Electricity Access In Tumkur District, India : A Feasibility Assessment Using GIS, Heuristics And Simulation Models

Deepak, P January 2011 (has links) (PDF)
Energy is an important input for various activities that provide impetus to economic, human and social development of any country. Among all the energy carriers, electricity is the most important and sought after energy carrier for its quality, versatility and ability to perform various technology driven end-use activities. Therefore access to electricity is considered as the single most important indicator determining the energy poverty levels prevailing in a country. Demand for electricity has increased significantly, especially in the developing countries, in recent years due to growth in population and intensification of economic activities. Therefore, providing quality and reliable electricity supply at low-cost has become one of the most pressing challenges facing the developing world. Although sufficient efforts have gone into addressing this issue, little progress has been made in finding a satisfactory solution in alleviating this problem. Currently, electricity supply is mostly dependent on centralized large-scale power generation. These centralized systems are strongly supply focused, fossil-fuel intensive, capital intensive, and rely on large-distance transmission and distribution systems. This results in electricity cost becoming unaffordable to the majority poor which comprises more than 70% of the total population in developing countries like India and the benefits of quality energy remaining with the rich, giving rise to inequitable distribution of energy. Continuous exploitation of fossil fuels has also contributed to local and global pollution. Therefore it is necessary to explore alternate means of providing energy access such that the energy carriers are clean, easy to use, environmentally benign and affordable to the majority of the rural poor. India is at a critical juncture of passing through the path of development. India is also in a unique position that its vast majority of rural population is energy poor which is disconnected from the electricity grid. In this context, the proposed research is an attempt towards developing a greater understanding on the issue of rural energy access and providing a possible solution for addressing this gap. This has been proposed to be achieved by adopting a decentralized energy planning approach and distributed energy systems mostly based on renewable energy sources. This is expected to reduce dependence on imported energy, promote self-reliance, provide economically viable energy services for rural applications and be environmentally safe. The focus is limited to biomass energy route which has many advantages; it is a geographically equitably distributed resource, geographical advantage of having potential to setup energy systems at any location where vegetation is present and not seasonal like other renewable energy technologies. A mathematical model-based approach is developed to assess the feasibility of such a proposal. Models are developed for performing biomass resource assessment, estimating end-use-wise hourly demand for electricity, performing capacity and location planning and assessing economic feasibility. This methodological framework was validated through a case study developed for the district of Tumkur in the state of Karnataka (a state in southern region of India). The literature survey was conducted exhaustively covering the whole span of supplyside and demand-side management of electricity systems, and grid-connected and stand-alone power generation systems, their technical, economic and environmental feasibilities. Literature pertinent to GIS applications in biomass assessment, facility location planning and scheduling models were also reviewed to discern how optimal capacity, location and economic dispatch strategy was formulated. Through the literature survey it was understood that there were very few attempts to integrate both demand-side management and supply-side management aspects in the rural energy context. GIS based mathematical models were sparsely used in rural energy planning and decision making. The current research is an attempt to bridge these gaps. The focus in this study is on effectively utilizing the locally available biomass resource. Assessment of Biomass Potential for Power Generation As a first step, the supply option was studied at village level by overlaying LULC (land use land cover) and village boundary GIS maps of Tumkur district. The result was fortified by the NDVI results from remote sensing images of land use pattern in Tumkur district. A detailed village-level assessment of wasteland potential was made for the entire district. The result showed which shows that in Tumkur district, roughly 17.3% of total geographical land was under exploitable wasteland. Using secondary data and literature, biomass potential indices were prepared for different wasteland types to determine the total biomass potential for power generation. The results based on the GIS data the assessment shows that Tumkur has roughly 17.3% of exploitable wasteland. A complete village-level annual power generation potential was assessed considering both energy plantations from wasteland, existing degraded forests and crop residues. Assessment of end-use-wise hourly Demand for Electricity at Village Level Household survey was conducted for 170 sample households randomly chosen from 15 villages, again randomly selected to represent different socio-economic categories. Using statistical tools like k-means clustering, one-way ANOVA and Tukey’s HSD test, first the households were classified into three economic categories to study the distribution of the households in each sample village. Later based on the number of households of each type in a village, the villages were further classified into five groups based on their socio-economic status. This was done to select the right representative per-household power demand for a village of any particular socioeconomic category. The representative per household power demand in each economic category along with secondary data helped in deriving the electricity daily load profiles for all the villages. Representative demand profiles were generated for different seasons across different sectors namely domestic, agriculture and industry sectors at the end-use level comprising of activities like home lighting, appliances, irrigation pump sets operation and small industry operations. Mathematical Modeling for Optimal Siting of Biomass Energy Systems Since the power has to be generated through biomass route, biomass may have to be transported over a large geographical area which requires efficient design of logistic systems. Apart from that, a major component of cost of biomass power is the cost of transportation of biomass from source to the power plant. Therefore it is important to determine the optimal siting of biomass energy systems to minimize the cost of transportation. Since these optimal locations are based on minimizing Euclidian distance, installing the power generation systems at these locations would also minimize total cost of local transmission and distribution. In order to locate the biomass energy system, K-medoid clustering algorithm was used to determine the optimal number of clusters of villages to minimize the Euclidean distance between the medoid of the cluster and the villages within the cluster, and minimize the total installed capacity to meet the cluster demand. The clustering algorithm was modified in such a way that the total capital cost of the power generation system installation was minimized. Since the total project cost not only depended on capital cost alone, but also on biomass transportation and power transmission costs, these costs were also included in the analysis. It was proposed to locate the energy systems at the medoids of the clusters. Optimal Capacity Planning Installing biomass power systems requires large investments. It is therefore necessary to reduce the peak demand to bring down the installed capacity required. This was achieved by developing heuristics to arrive at an optimal scheduling scheme of the end-use activities that would minimize the peak demand. The heuristics procedure was demonstrated on five representative villages, each from different economic category. The optimal demand profile was used as input in HOMER micro-energy system simulation software to perform a techno-economic analysis. The simulation facilitated a thorough economic feasibility study of the system. This included a complete analysis of the cash inflows and outflows, capital cost of the system, operation and maintenance cost, cost of fuel and estimation of total GHG emissions. There are many limitations in planning at village-scale. The results indicated that capacity planning done at the village level was prone to over-estimation of installed capacity of the system increasing the investment requirement, under utilization of the capacity and suffered from supply scarcity of biomass. This emphasized the need for looking at a bigger conglomerate of villages in other words cluster of villages. In the next step, the optimal capacity planning was performed for one of the clusters formed using the K-medoid clustering algorithm with the power generation system located at the medoid. For demonstrating the practical feasibility of extending the methodology to cluster level, a cluster with maximum number of villages was chosen from the optimal cluster set in the k-medoid algorithm output. The planning was conducted according to the socioconomic category of the villages in the cluster. Economic implications of Stand-alone (SA) vs Grid-connected (GC) Mode of Operation Other important question that was answered in this analysis was a comparison of GC systems with SA systems. Since extension of grid to a village that is not electrified involved drawing high voltage transmission lines from the nearest grid point, installation of distribution transformers and low transmission lines within the village for distribution. Since these involve high costs it was necessary to study whether or not it is feasible to extend the grid or install a stand-alone system. This question was answered by the breakeven distance for which grid extension becomes more economical than a SA system. For each village breakeven distance varied with the total installed capacity and the operational costs. This helped to compare the GC systems vis-à-vis SA systems from the point of view of economic feasibility. Summary It is necessary that planning and strategies be rational and reasonable for effectively assuaging the rural electrification imbroglio. The current study has highlighted the importance of integrating both demand-side-management and supply-sidemanagement of energy systems in the context of planning for power generation and distribution in rural areas. The key findings in the current study are: • The study showed the feasibility of biomass power systems in meeting the rural electricity needs. • Biomass assessment results showed that, if the power demand could be brought down by replacing the existing appliances with efficient ones (ex. compact fluorescent lamps and improved irrigation pump set valves), Tumkur district has enough biomass potential to meet both the current as well as increased future demands for electricity. • The optimal number of clusters minimizing total capital cost of biomass energy systems, transportation cost of biomass and distribution cost of power, was 96 for Tumkur district. For Kunigal block, the optimal number of clusters was 37 and 32 for supply and demand scenarios 1(BAU -Business As Usual) and 2 (with 10% increase in cropland and 20% increase in demand). • The optimal capacity planning emphasized the importance of clustering of villages for minimizing the total installed capacity. The result also showed that the breakeven distance was the determining factor about the choice of GC vs SA systems. The main contributions of this thesis are: i. Hourly demand pattern was studied to estimate the aggregate demand for electricity at village level for different sectors across various seasons. ii. Village-wise biomass resources potential for power generation was assessed iii. Optimal locations for siting biomass energy systems were identified using k-medoid clustering algorithm iv. An optimal scheduling of end-use activities was planned using heuristics method to minimize the installed capacity v. Optimal location, scheduling plan of end-use activities and optimal capacity were determined for individual villages as well as village clusters vi. The economic implications of grid extension vis-à-vis stand-alone mode of operation of the installed biomass energy systems were studied The generalized, multipronged approach presented in this thesis to effectively integrate both demand-side management and supply-side management in rural energy planning can be implemented for any rural region irrespective of the location. The results emphasized that for efficient demand-side and supply-side management, it is important to plan for clusters of villages than at the individual village level. The results reported in this thesis will help the policy and strategy makers, and governments to achieve rural electrification to a satisfactory extent to ensure continuous, uninterrupted and reliable power supply by determining the clustering strategy, optimal cluster size, optimal scale and siting of decentralized biomass power generation systems.
14

[en] MULTICRITERIA APPROACH FOR EVALUATION OF SCENARIOS GENERATING MODELS APPLIED TO THE MEDIUM-TERM HYDROTHERMAL OPERATION PLANNING / [pt] ABORDAGEM MULTICRITÉRIO PARA AVALIAÇÃO DE MODELOS GERADORES DE CENÁRIOS APLICADOS AO PLANEJAMENTO DA OPERAÇÃO HIDROTÉRMICA DE MÉDIO PRAZO

HUGO RIBEIRO BALDIOTI 04 February 2015 (has links)
[pt] A abordagem multicritério é empregada no contexto de avaliação de modelos geradores de cenários sintéticos, tendo como objetivo ordená-los em relação ao desempenho global do ponto de vista estocástico. Ao longo dos últimos anos, têm sido desenvolvidos modelos alternativos de geração de cenários para utilização no planejamento energético da operação hidrotérmica de médio prazo. Esses estudos são motivados pela necessidade contínua de se investigar melhorias na modelagem vigente. A proposta de desenvolvimento de um índice capaz de ordenar diversos modelos surgiu da falta de uma avaliação categórica das modelagens que vinham sendo propostas no decurso dos anos. Tendo isso em vista utilizou-se o Processo de Análise Hierárquica, ou em inglês AHP (Analytic Hierarchy Process), com o intuito de auxiliar a escolha do melhor processo gerador de cenários. Essa abordagem gera pesos para cada um dos atributos selecionados e, a partir desses valores, ponderam-se as alternativas. O problema é estruturado de forma hierárquica em quatro níveis, sendo, em ordem decrescente: objetivo, critérios, subcritérios e alternativas. Os subcritérios selecionados são agrupados em critérios que representam testes escolhidos para avaliar os modelos em julgamento (alternativas). O processo de geração de pesos foi feito através de consulta aos especialistas do setor elétrico (ONS, EPE, CEPEL, PSR, entre outros), buscando gerar os melhores resultados possíveis e expandir a aplicabilidade da modelagem. Com o objetivo de auxiliar o tomador de decisão, a abordagem proposta mostrou-se eficiente ao ordenar os modelos e indicar, através de análises de sensibilidade dos atributos, a volatilidade das alternativas. / [en] Multicriteria approach is deployed in the context of evaluation of synthetic scenarios generating models, having as its purpose to order them concerning the overall performance in the stochastic point of view. Alternative scenarios generating models are being developed through the years to be used in medium-term hydrothermal operation energy planning. These studies are motivated by the ongoing necessity of investigating improvements in the current pattern. The development proposal of an index capable of sorting several models has come from the lack of a categorical evaluation on patterns, which have been proposed in the course of years. Taking it into consideration, Analytic Hierarchy Process (AHP) has been used in order to assist the adoption of the best scenarios generating process. This approach creates weights for each one of the selected attributes and, starting from these values, alternatives are pondered. The problem is hierarchically structured in four levels, which, in descending order are: objective, criteria, subcriteria and alternatives. The selected subcriteria are grouped in criteria which represent statistical tests chosen to assess the models that are being judged (alternatives). The weights generation process was held through consulting Brazilian electrical sector specialists [National Operator of the Electrical System (ONS), Public Company of Energy Research (EPE), Research Center of Electric Power (CEPEL), PSR, among others], aiming at producing the best achievable results and at expanding the applicability of the pattern. Excelling the support to the decision maker, the suggested approach has shown efficient at ordering the models and indicating, through attributes sensitivity analysis, the volatility of the alternatives.
15

Mecanismos de desenvolvimento limpo no planejamento integrado de recursos energéticos. / Clean development mechanisms on energy integrated resources planning

Kanayama, Paulo Hélio 28 May 2007 (has links)
O objetivo fundamental deste trabalho é introduzir efetivamente as variáveis do aquecimento global dentro do planejamento energético através do Planejamento Integrado de Recursos Energéticos - PIR. A causa do aquecimento que ameaça a vida como conhecemos na Terra não é a liberação de gases de efeito estufa por atividades antropogênicas. A liberação desenfreada dos gases de efeito estufa é uma consequência do modelo de desenvolvimento econômico, que incentiva o uso insustentável de energia e recursos naturais. É necessário repensarmos o modelo de desenvolvimento, a causa do problema. Neste sentido, este trabalho apresenta uma alternativa de planejamento energético, que inclusive engloba a questão do aquecimento global. Metodologicamente busca-se a satisfação das necessidades regionais para depois delinear as necessidades de uma macro região. A utilização dos recursos energéticos próprios da região é priorizada. A vocação econômica regional é vista como vantagem competitiva para melhoria de índices sociais. As limitações ambientais, incluindo os efeitos do aquecimento global, são consideradas. As forças políticas são respeitadas. Os atores envolvidos e interessados no desenvolvimento regional participam do planejamento. E o mais importante, a abordagem sistêmica para buscar o ótimo é feita antecipadamente, conseguindo-se prever conseqüências do desenvolvimento antes da implantação de projetos. Estes, com ganhos econômicos, sociais, ambientais epolíticos, ao mesmo tempo, são priorizados em relação àqueles com ganhos predominantemente econômicos. Desta forma minimiza-se riscos e dificuldades de licenciamentos ambientais, rejeição pública, bem como problemas decorrentes da utilização insustentável de recursos naturais. ) Para validar este trabalho, a metodologia é aplicada em uma região do interior do Estado de São Paulo, a Região Administrativa de Araçatuba, composta por um conjunto de 43 municípios. Na conclusão, o trabalho aponta quais são os recursos energéticos que melhor se ajustam às premissas do desenvolvimento sustentável, que inclui a questão do aquecimento global. / The primary objective of this work is to effectively introduce the variables of global warming within energy planning through Integrated Resources Planning - IRP. The cause of this warming which threatens life on Earth is not the release of greenhouse gases through anthropological activities, but it is rather the consequence of an economic development model which stimulates the unsustainable use of energy and natural resources. It is necessary to rethink the development model. In this sense, this work presents an energy planning alternative that also takes into consideration the question of global warming. In terms of methodology, the satisfaction of regional needs are sought, and then expanded to a macro region. The use of internal energy resources of a particular region is prioritized. This regional economic tendency can be seen as a competitive advantage for the improvement of social indexes. The environmental limitations, including the effects of global warming, are considered. Political forces are accountable, and the stakeholders involved in regional development take part in planning. Most importantly, the systemic approach to obtain an optimum point is done previously through the prediction of development consequences prior to project implantation. These projects, with economic, social, and environmental benefits, are prioritized in relation to projects of predominant economic benefits. Thus, there is a minimization of risks and difficulties ofenvironmental licenses, public rejections, and problems of the unsustainable use of natural resources. To validate this work, this methodology was applied in Araçatuba, a region of the state of São Paulo, composed by a total of 43 municipalities. In conclusion, this work points the most adaptable energy resources to the subject of sustainable development, including the issue of global warming.
16

Considerações sobre a utilização do gás natural na geração de energia elétrica em Municípios da Região Amazônica / Considerations about the use of natural gas in electric energy generation in cities located in the Amazon Region.

Bonfim, Marcelo dos Santos 19 March 2008 (has links)
O suprimento de energia elétrica a municípios localizados no interior da Região Amazônica é de consecução tecnicamente complexa, de alto custo e potencialmente gerador de impactos ambientais. Tais municípios não têm grande demanda por energia elétrica, entretanto, o direito ao acesso à mesma deve ser considerado e atendido. O objetivo deste estudo é avaliar a situação atual de suprimento de energia elétrica em municípios do interior da Região Amazônica, considerando suas especificidades e necessidades, bem como apresentar uma análise sobre a utilização do gás natural na geração da energia elétrica em subsituição aos combustíveis atualmente utilizados em cada caso. Para este estudo foram selecionados sete municípios da Região Amazônica: Anamã, Anori, Caapiranga, Coari, Codajás, Iranduba e Manacapuru, que poderão ser atendidos pelo gasoduto Urucu-Manaus. / The electric energy supply to cities located in the countryside of Amazon Region is technically complex, has high cost and is potentially a cause of environmental impact. Such cities don\'t have a big demand on electric energy; however, the right of access to electric energy must be considered and attended. The objective of this study is to evaluate the present situation of the electric energy supply in cities located in the countryside of Amazon Region, considering its needs and specific characteristics, as well as to present an analysis about the uses of natural gas in electric energy generation in substitution to the fuels used in each case. For this study were selected seven cities in Amazon Region: Anamã, Anori, Caapiranga, Coari, Codajás, Iranduba, and Manacapuru, which can be attended by the Urucu-Manaus Gas Pipeline.
17

A Energia Térmica e o Paradoxo da Eficiência Energética: Desafios para um Novo Modelo de Planejamento Energético / The Thermal Energy and the Energy Efficiency Paradox: Challenges for a New Paradigm of Energy Planning

Strapasson, Alexandre Betinardi 03 September 2004 (has links)
O modelo brasileiro de geração de energia elétrica possui características muito peculiares em relação aos demais países do mundo. Seu vasto parque hidrelétrico possibilitou ao país utilizar indiscriminadamente a eletricidade em diversas formas de uso final. Porém, com a transição do modelo hídrico para um modelo misto de geração, surge um novo paradigma de eficiência energética. A eletricidade consumida em usos finais térmicos pode agora ser substituída por diferentes fontes energéticas de origem química, como o gás natural e a biomassa. Nesse novo cenário, a energia primária pode ser convertida tanto em energia elétrica, quanto em energia útil, na forma de calor. O objetivo desta pesquisa foi identificar a distorção presente no atual modelo energético nacional e avaliar o potencial de economia de energia primária possível de ser obtido pela substituição de eletricidade por fontes de origem química, em usos finais térmicos. A hipótese formulada é de que o uso racional da energia, segundo sua qualidade exergética e finalidade de uso, pode reduzir significativamente o consumo de energia primária. Para comprovar essa hipótese, foram realizadas estimativas de substituição de eletricidade por gás natural, nos usos finais térmicos de todos os setores de consumo. Além disso, foi realizada uma análise comparativa entre diversos países do mundo, quanto ao uso do calor em suas matrizes energéticas, a fim de estimar o percentual de eletricidade que poderia ser substituído no Brasil e a quantidade de energia química equivalente que seria demandada. Também foram estimados os possíveis ganhos ambientais decorrentes de tal substituição. Os resultados obtidos mostram a relevância do tema e o impacto que uma política de uso racional da energia poderia alcançar. / The electrical generation model of Brazil has a peculiar characteristic regarding other countries. Its large hydropower capacity allowed the indiscriminate use of the electricity for several kinds of end uses. However, with the transition of the hydroelectric generation model for a mixed generation model, a new paradigm of energy efficiency appears. The electricity consumed in the thermal end uses can be now substituted by other energy sources like natural gas and biomass. In that new scenario, the primary energy can be converted in electricity as well as useful energy. The objective was to identify the existent distortion in the current Brazilian model and to evaluate the economy potential of primary energy that could be obtained substituting the electricity by chemical energy in thermal end uses. The formulated hypothesis is that the rational use of energy, according to its exergy quality and purpose of use, can reduce significantly the primary energy consumption. The substitution of electricity by natural gas was simulated for all the thermal end uses of the energy mix. Besides, a comparative analysis taking into account other countries was carried out about the use of heat in the energy mixes, in order to estimate the electricity percent that could be substituted in Brazil and the equivalent amount of chemical energy that would be demanded. The possible environmental gains promoted by that substitution was also estimated. The results show the relevance of the theme and the impact that a policy of energy efficiency could attain.
18

Comparação entre as estratégias de aproveitamento energético do biogás: geração de energia elétrica versus produção de biometano / Comparing strategies of biogas energy use: electricity generation versus biomethane production

Perecin, Danilo 31 October 2017 (has links)
Os sistemas de produção e utilização do biogás podem envolver externalidades positivas como o tratamento de resíduos, a produção de biofertilizante e a redução de emissões de gases de efeito estufa. Além disso, possibilitam o desenvolvimento do potencial energético desta fonte renovável, que pode ser aproveitada por meio da geração de energia elétrica ou pela produção de biometano, combustível obtido pela purificação do biogás, e que é similar ao gás natural. Nesse contexto, o objetivo desta dissertação é detalhar estas estratégias e compará-las para o caso brasileiro. Busca-se identificar o uso mais desejável do biogás no contexto do setor energético nacional, considerando as características da fonte e sua relação com a situação atual e as perspectivas dos mercados de eletricidade e gás. Para isso, inicialmente é realizada uma revisão das tecnologias de aproveitamento do biogás e são discutidas as vantagens de se identificar um uso que possa se tornar prioritário, capaz de reunir em si os incentivos para a expansão dessa fonte na matriz energética. Argumenta-se que o desenvolvimento de uma indústria local e de projetos bem-sucedidos, necessários ao fortalecimento do biogás no Brasil, podem ser alcançados por meio da criação de mecanismos de fomento específicos para uma estratégia, que sejam claros e de longo prazo. Em seguida, a evolução desse setor na Alemanha e na Suécia é avaliada, observando-se que políticas de direcionamento da utilização do biogás conduziram o mercado, tendo como consequência sistemas voltados, respectivamente, à geração de energia elétrica e à produção de biometano para uso veicular. Baseada na definição de política energética, a comparação entre a produção de eletricidade e de biometano a partir do biogás no Brasil é apresentada segundo os critérios: segurança no abastecimento, preço da energia, balança entre importações e exportações, infraestrutura, e aspectos ambientais. As conclusões apontam para o biometano como um uso promissor da energia do biogás no país em termos da redução de importações e em projetos de grande escala próximos à infraestrutura de gás natural, mas com barreiras a serem superadas principalmente quanto a competitividade em plantas menores e distantes dos gasodutos. A produção de energia elétrica, por outro lado, tem incentivos e mecanismos de comercialização estabelecidos e pode ser competitiva principalmente se exploradas suas características de energia firme e flexibilidade, mesmo em um contexto de concorrentes renováveis de grande potencial e em crescimento. / Biogas production systems may involve positive externalities such as waste treatment, biofertilizer production and the reduction of greenhouse gases emissions. Besides, they enable the use of its renewable energy potential, which can generate electricity or produce biomethane. Biomethane is obtained from biogas upgrading and it is similar to natural gas. This study details these strategies and compare them for the Brazilian case, with the aim of identifying if there is one optimal solution for biogas utilization within the context of the national energy sector, by analyzing the characteristics of biogas and its correlation with the status and the perspectives of the electricity and gas markets in the country. First, the advantages of selecting one alternative of biogas utilization to be the focus of policy instruments and to guide the development of the biogas sector are discussed. It is argued that the development of a local industry and successful projects, required to expand the biogas sector in Brazil, could benefit from technology-specific incentives, designed as clear and long-term mechanisms. The evolution of biogas systems in Germany and Sweden are investigated, and it is observed that the policies implemented in these countries have guided biogas utilization, respectively, to electricity generation and to biomethane use as vehicle fuel. Then, based on the definition of energy policy, five criteria are selected to evaluate and compare electricity and biomethane production from biogas in Brazil: security of supply, energy price, balance of trade, infrastructure, and environmental aspects. It can be concluded that, although biomethane can have a positive impact reducing natural gas imports especially in large-scale projects close to pipeline infrastructure, it also has many barriers to overcome, including its adaptation to small-scale units and the limitation of infrastructure. Electricity generation is a more established alternative that can be feasible if its capacity to provide baseload and flexibility are properly evaluated, even facing the competition of other renewable technologies with low-cost and large potential in the country.
19

Modelo de integração de recursos como instrumento para um planejamento energético sustentável. / Model of resource integration as a tool for sustainable energy planning.

Gimenes, André Luiz Veiga 28 May 2004 (has links)
Este trabalho propõe um modelo de Integração de Recursos fornecendo com isso um instrumento metodológico para um Planejamento Energético Sustentável, neste caso, o Planejamento Integrado de Recursos - PIR. Nele, os aspectos econômico, social e ambiental da disponibilização de energia são tratados de forma integrada e a priori, diferentemente do processo tradicional de planejamento, onde estes são elementos anexos, considerados como impactos a serem gerenciados a posteriori. Neste contexto este trabalho propõe um modelo para tratamento dos elementos do Planejamento Integrado de Recursos Energéticos: - Conhecimento abrangente da localidade a ser atendida ou afetada pela alternativa energética. - Participação ampla da sociedade ou Envolvidos-Interessados. - Consideração de todas as possibilidades tecnológicas e energéticas segundo uma caracterização Técnica, Econômica, Social e ambiental das mesmas. - Avaliação e classificação das alternativas energéticas a partir das dimensões técnica, econômica, social e ambiental, através da Avaliação dos Custos Completos. - Busca do menor custo completo. - Processo Iterativo onde decisões de um momento afetam as escolhas do momento seguinte. Estes elementos, por si só já representam uma expansão das áreas de ação de aspectos usualmente considerados no Planejamento Integrado de Recursos - PIR. Além disso, introduzem enfoques integrados e inovações de grande impacto para um Planejamento Energético Sustentável, como édemonstrado do Estudo de Caso para uma pequena comunidade na região amazônica. Dessa forma, a Integração de Recursos se mostra capaz de instrumentalizar metodologicamente o PIR facilitando o processo de tomada de decisão / This work proposes a Resources Integration Model as a methodological tool for a Sustainable Energy Planning, in this case, the Integrated Resources Planning - IRP. Economical, social and environmental aspects of the energy chain, from production to end uses are considered in a integrated way, since the beginning of the project, differently from the traditional planning process, in which these elements are usually managed separately. Within this context, this work proposes a model to approach the following elements for an Integrated Energy Resources Planning: - Full understanding of the place to be assisted or affected by the energy alternatives. - Wide society participation - Interested-Involved. - Consideration of all possible energy technologies and forms, with identification of their technical, economical, social and environmental aspects. - Evaluation and classification of the energy alternatives taking into account all technical, economical, social and environmental dimensions by using the Full Cost Account method. - Search for the smallest full cost. - Utilization of an iterative process, in which decisions in a moment affect the choices in the next moment. These elements by themselves represent an expansion of usual areas of the Integrated Resources Planning - IRP. Besides, they introduce an integrated view and innovations that largely impact the processes for a Sustainable Energy Planning, as shown in the case study for a small community in the Amazonian region. Then, the Integration Resources is able to instrumentalize the IRP facilitating the decision taking process.
20

Priorização de alternativas de geração termelétrica distribuída. / Alternatives priorities for distributed thermoelectric generation.

Fortes, Márcio Zamboti 03 September 2007 (has links)
Os efeitos multidisciplinares presentes em projetos de engenharia, sobretudo naqueles de infra-estrutura, têm alargado as fronteiras de pesquisas para avaliá-los não só do ponto de vista convencional técnico econômico, mas também sob a ótica ambiental e social. Por outro lado, o investidor que tradicionalmente buscava oportunidades apenas considerando o desempenho econômico e financeiro, atualmente é levado a analisar os empreendimentos também no âmbito social e ambiental. Fundamentado em várias informações disponíveis em bases de dados constituídas por diversas instituições, o modelo desenvolvido nesta pesquisa é uma solução para avaliar o mérito de um empreendimento de geração distribuída de origem térmica, considerando os aspectos econômico, social e ambiental, por meio de indicadores que quantificam, objetivamente, aspectos econômicos como taxa de retorno de capital e margem liquida, bem como fatores sociais como o impacto na educação, na saúde, na renda e no emprego e ainda, verifica o atendimento das restrições ambientais. A solução apresentada, sem prejuízo da avaliação dos aspectos pragmáticos relativos à viabilidade econômica e respeito à regulamentação ambiental, traz uma forma simples e clara de atribuir um grau de mérito agregado às alternativas de implementação de geração distribuída, considerando a intensidade da responsabilidade social subjetiva do investidor. A análise de cenários e de sensibilidade diante da variação de parâmetros diversos que o modelo oferece, permite aferir o grau de robustez e de importância da precisão de variáveis específicas. Embora não esgote o tema, o modelo apresentado contribui para estimular diferentes formas de avaliar e priorizar multidisciplinarmente a implementação um empreendimento de geração distribuída, podendo inclusive, se prestar como indicador de financiamentos privilegiados ou outros incentivos do gênero. / The multidiscipline effects in engineering projects, mainly in those of infrastructure, have extended the borders of research to not only evaluate them of the conventional point of view, economic and technical, but also environmental and social. On the other hand, the investor who traditionally searched alternatives only considering the economic and financial performance currently is taken to analyze also the social and environmental aspects. Based on some information available in several institutions databases, the model developed in this research is a solution to evaluate the merit of an enterprise of distributed generation of thermal origin, considering the economic, social and environmental aspects, using merit indexes that quantify, directly, economic aspects as capital return tax and operating income eliminates, as well as social factors like the impact in the education, health, income and employment rates and still, it verifies the attendance of the environmental restrictions. The solution presented, without damage the evaluation of the pragmatic aspects related to economic viability and respect to the ambient regulation, brings a simple and clear form to attribute a merit degree of aggregate to the alternatives to embed distributed generation, considering the intensity of the subjective social responsibility of the investor. The analysis of sceneries and sensitivity ahead of the diverse parameter variation that the model offers, allows investigating the robustness degree and accuracy importance of specific variable. Although it does not deplete the subject, the presented model is an important contribution to stimulate a form to evaluate and to prioritize the multidiscipline implementation to a distributed generation enterprise, also being able, to be used as financial index or other incentives of the sort.

Page generated in 0.0671 seconds