• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 587
  • 309
  • 16
  • 8
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 1115
  • 1115
  • 816
  • 306
  • 186
  • 153
  • 133
  • 127
  • 127
  • 110
  • 106
  • 105
  • 103
  • 99
  • 85
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Ανάλυση και έλεγχος αιολικών συστημάτων παραγωγής ηλεκτρικής ενέργειας

Νέρης, Αριστομένης 08 December 2009 (has links)
- / -
12

Energy analysis for a snow-free surface : A technical analysis of the benefits of insulation under the heating pipes

Ying, Song January 2018 (has links)
Snow-free surfaces is needed for parking place, platform, and playground and even in city center square. With energy prices rising, energy saving is becoming a hot topic. Meanwhile environmental problems are becoming more and more serious, thus, the ways to saving energy is becoming an eye-catcher. So burring heating pipes underground has been a popular way to get ice-free surfaces. Using heating pipes for melting snow is much more efficient and more benefit for the environment comparing with using other methods.   In this project, an energy analysis of a football pitch with an area of 5000 m2 is carried out under a series of conditions between insulated and uninsulated construction. All calculations are done with the so-called finite element method (FEM), in the COMSOL. COMSOL is used for simulating and calculating the energy use with outdoor temperatures of -5 ºC and -10 ºC. Top layer materials concrete, grass and stone are also discussed. The ability of XPS and EPS insulation material is compared and noted. The models are divided into two parts, one is with snowfall and the other is without snowfall.   The results in the report shows that adding insulation under the heating pipe has significant energy saving potential. The surface with concrete layer has the best insulated ability, which can prevent more heat losses. The EPS insulated construction has a better performance in keeping more heat in the soil.
13

Customer Benefit Analysis and Experimental Study of Residential Rooftop PV and Energy Storage Systems

January 2017 (has links)
abstract: The government support towards green energy sources for the better future of the planet has changed the perspective of the people towards the usage of green energy. Among renewables, solar is one of the important and easily accessible resources to convert energy from the sun directly into electricity and this system has gained fame since the past three decades. SRP has set up a 6.36 kW PV and 19.4 kWh battery system on the rooftop of Engineering Research Center (ERC). The system is grid-connected and ASU (Arizona State University) has developed two load banks with a minimum step of 72 watts to simulate different residential load profiles and perform other research objectives. A customer benefit analysis is performed for residential customers with photovoltaic (PV) systems and energy storage particularly in the state of Arizona. By optimizing the use of energy storage device, the algorithm aims at maximizing the profit and minimizing utility bills in accordance with the demand charge algorithm of the local utility. This part of the research has been published as a conference paper in IEEE PES General Meeting 2017. A transient test is performed on the PV-battery during the on-grid mode and the off-grid mode to study the system behaviour during the transients. An algorithm is developed by the ASU research team to minimize the demand charge tariff for the residential customers. A statistical analysis is performed on the data collected from the system using a MATLAB algorithm. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2017
14

Simulering av ett 10-40 kV nät för analys av förluster och kapacitetsgränser / Simulation of a 10-40 kV grid for analysis of transmission losses and capacity limits

Lyxell, Eric January 2020 (has links)
This study was carried out on behalf of Pite Energi with the guidance of Rejlers. The assignment was to develop a simulation model over part of Pite Energi's power grid. This will allow calculations of losses and capacity limits in the network, which then can form the basis for future efficiency improvements. The work has also investigated the possibility of a backup line for the voltage level of 40 kV and how the energy losses are affected under the periods of high and low load in the 10 kV grid, respectively. The grid is constructed with two 40 kV lines, ordinary and reserve, which are parallel to each other. The voltage in these lines is transformed down to two different voltage levels of 10 and 20 kV, respectively. Data has been collected on the exracted load at 10 kV as well as electricity production from 35 MW wind power at 20 kV. This data was collected by Pite Energi for all hours of 2019 and used as input in the thesis work for simulations and calculations of the grid. The investigated 40 kV grid shows a reduced loss as load increases in the 10 kV grid as long as the increase follows the load variations for 2019. Compared to the losses for the base case, reduced losses are obtained in 40 kV networks with loads up to 16-18 MW. The report also shows that there are opportunities for further energy savings through regulating production, or energy storage in the wind farm. The difference in network losses between high and low load times is very small. This is largely due to the large difference between production and consumption in the grid. With the load variations measured for 2019, it shows that the limitations in the 40 kV network are primarily due to the thermal limits for both ordinary and reserve. The result also shows that today there is a good margin to the network's capacity limits and will most likely be able to handle any load increases that may come in the near future.
15

Power-to-power med vätgaslager i anslutning till vindkraft / Power-to-power with hydrogen storage in connection to windpower

Wennerström, Sofia January 2022 (has links)
Renewable energy will presumably constitute most of the energy production within the next coming years. Both globally and in Sweden the governments continuously implement new guidelines to enable more renewable energy in the energy system. This implicates higher amount of intermittent energy resources, for instance wind power, which can be a challenge due to electricity demand and electricity production. There are several solutions which can be implemented in order to adapt the electricity production to the electricity demand, one of them is a power-to-power system.    This project aims to analyze whether a power-to-power system with hydrogen storage can be profitable. A power-to-power system is defined by storing the surplus power production from intermittent energy resources as form of hydrogen. The hydrogen will at a future time be generated back to power when the electricity demand increases. In the examined work the hydrogen is produced through a water electrolysis with electricity from wind power when the electricity prices are low. The hydrogen will be used in fuel cells to generate electricity which can be sold when the electricity prices are high. The project investigates two counties with different amount of installed capacities from wind power. Two scenarios are applied for the two counties, what distinguish each scenario is the limit of electricity price when the electricity from wind power starts being utilized to produced hydrogen instead of transferred to the electricity grid.   The results indicates that the electricity price need to reach a high level for the system to be profitable. It is not likely the electricity prices will reach that level more than a few times a year considering the electricity price levels the last couple of years.
16

Analys av storskalig vätgasanläggning för effektbalansering och regional transportsektor : Simulering av ekonomi, storlek och miljö / Analysis of large-scale hydrogen plant for power balancing and regional transport sector : Simulation of economics, size and environment

Runberg, Erik January 2021 (has links)
För att minska de globala utsläppen och klara klimatmålen i Parisavtalet måste fossil elproduktion fasas ut och ersättas av förnybar energi. Förnybara energikällor, exempelvis vindkraft, har ökat kraftigt de senaste åren. Detta introducerar nya utmaningar då elproduktionen inte alltid stämmer överens med elbehovet eftersom förnybara energikällor inte kan kontrolleras på samma sätt som de fossila; vindkraftverken kan inte producera el utan vind. Detta får konsekvensen att elnätets stabilitet och elens kvalité blir sämre, samt att elpriset varierar kraftigare. Problemet kan lösas genom att köpa överskottsel och lagra energin när elbehovet är lågt, för att sedan sälja den när elbehovet är högt. På så sätt jämnas effektvariationerna ut. Att lagra energi i form av vätgas, har pekats ut som den mest lovande metoden för att genomföra detta i tillräckligt stor skala. Vätgas produceras i en elektrolysör av el och vatten när elbehovet, och därmed elpriset (spotpriset) är lågt. Vätgasen lagras sedan i naturliga och konstgjorda bergrum för de största anläggningarna, eller ovan jord i tankar och tuber för mindre anläggningar. När elbehovet och därmed elpriset i stället är högt omvandlas vätgasen till el i en bränslecell. I elektrolysören och bränslecellen produceras även spillvärme som kan utnyttjas exempelvis i ett fjärrvärmenät. Konstruktionen av vätgasanläggningar gör även en omvandling till vätgasdrift inom transportsektorn möjlig, vilket skulle medföra reducerade utsläpp av växthusgaser. Syftet är att visa vätgasens potential att bli en framtida energibärare och buffert i det svenska elnätet genom att studera olika design- och driftparametrar för en tänkt vätgasanläggning integrerad med värmekraftverket Heden, som drivs av Karlstads Energi AB. Den årliga fordonsvätgaskonsumtionen för Värmlandstrafik AB beräknas med hjälp av företagets totala körsträcka under 2020 ihop med kilometerförbrukningen vätgas för vätgasvarianterna av deras fordonstyper. Karlstads Energi AB:s årliga förbrukning beräknas genom att omvandla företagets mängd förbrukat bränsle under 2020 till den mängd vätgas som kan utföra samma arbete. De olika bränsletypernas energitäthet och de olika fordonens verkningsgrader används. För att simulera anläggningens årsintäkt konstrueras en modell i SIMULINK 9.2. Modellen har entimmes tidssteg vilket leder till 8760 tidssteg totalt. Spotpris tas in på timbasis och bestämmer om vätgas ska produceras i elektrolysören, konsumeras i bränslecellen för att producera el eller lagras tills senare. Spillvärmen från elektrolysören och bränslecellen säljs som fjärrvärme. Den beräknade årliga fordonsvätgaskonsumtionen delas upp till en daglig mängd med två fasta årliga nivåer. Värmlandstrafik AB använder en sommartidtabell vilket medför att förbrukningen sjunker under denna period. Anläggningens totala årsintäkt beräknas som såld el, fordonsvätgas och värme, minus köpt el och relaterade elhandelavgifter. Genom att bland annat variera storleken av anläggningens lagerstorlek samt elektrolysörens och bränslecellens märkeffekt byggs olika scenarion upp. Det reducerade utsläppet koldioxidekvivalenter beräknas genom att multiplicera vardera av de nuvarande bränslenas årsförbrukningar med respektive bränsles emissionsfaktor. Vätgasproduktionens utsläpp räknas som livscykelutsläppen för den konsumerade elen. 1360 ton vätgas/år är den årliga fordonsvätgaskonsumtionen som krävs för att tillgodose Värmlandstrafik AB:s och Karlstads Energi AB:s transporter. Den simulerade anläggningens årsintäkt är 51 – 65 MSEK/år beroende av anläggningens dimensioner och vilket spotpris som används. Bränslecellen beräknas ej vara lönsam i syftet att balansera elnätet. Ersättandet av de nuvarande bränslena med vätgas reducerar utsläppen med 4770 ton CO2eq/år räknat med svensk elmix, 1630 ton CO2eq/år räknat med nordisk elmix och 5870 ton CO2eq/år räknat med el köpt med ursprungsgaranti. Den framräknade fordonsvätgaskonsumtionen är stor nog för att installera en vätgasproduktion vid Heden. De miljömässiga fördelarna är också betydande. Med dagens verkningsgrader och avgifter krävs ett ostabilare spotpris för en bränslecell att bli lönsam. De ekonomiska simuleringarna är inte heltäckande nog för att möjliggöra några direkta beslut, men kan användas som grund. Fokus för fortsatta studier bör därför ligga i att inkludera investeringskostnader och avskrivningstider samt räkna på systemtjänsten som en bränslecell utför.
17

Thermodynamic Analysis of the Application of Thermal Energy Storage to a Combined Heat and Power Plant

McDaniel, Benjamin 17 July 2015 (has links)
The main objective of this paper is to show the economic and environmental benefits that can be attained through the coupling of borehole thermal energy storage (BTES) and combined heat and power (CHP). The subject of this investigation is the University of Massachusetts CHP District Heating System. Energy prices are significantly higher during the winter months due to the limited supply of natural gas. This dearth not only increases operating costs but also emissions, due to the need to burn ultra low sulfur diesel (ULSD). The application of a TES system to a CHP plant allows the plant to deviate from the required thermal load in order to operate in a more economically and environmentally optimal manner. TES systems are charged by a heat input when there is excess or inexpensive energy, this heat is then stored and discharged when it is needed. The scope of this paper is to present a TRNSYS model of a BTES system that is designed using actual operational data from the campus CHP plant. The TRNSYS model predicts that a BTES efficiency of 88% is reached after 4 years of operation. It is concluded that the application of BTES to CHP enables greater flexibility in the operation of the CHP plant. Such flexibility can allow the system to produce more energy in low demand periods. This operational attribute leads to significantly reduced operating costs and emissions as it enables the replacement of ULSD or liquefied natural gas (LNG) with natural gas.
18

Energy in Architecture: An Infrastructural Approach

Sinopoli, Luke C. 27 October 2014 (has links)
No description available.
19

Comparison study of various current and potential liquid biofuels in road freight transport : Application on a case study on Transport Centralen in Halmstad

Alex, Ansu January 2017 (has links)
The role of liquid biofuels in transportation to minimize the effects of climate change is  evident and has led to a number of studies on finding effective solutions to replace fossil fuels. Liquid biofuels are especially important for heavy duty transports as the effective ‘green’ alternatives are not as many compared to light duty vehicles; for which for e.g. electrification is an option. This thesis presents a comparison study of 8 liquid biofuels with a total of 13 different fuel pathways for use in road freight transports; both current and potential future fuels are assessed in terms of their environmental effects, fuel properties and compatibility with the heavy duty vehicle engines (see Table 10, page 36). Furthermore, a case study is performed to assess the practicality of the results of the study.  Hydro-treated vegetable oil, Bio Dimethyl ether, Liquefied Bio Methane/ ED95 are identified as fuels with considerable potential in the shorter term. Algal biofuel and Biomass to liquid (BTL) fuels from synthesis gas, if realized commercially would be a breakthrough for biofuels in overall transportation sector. However, life cycle analysis has to be performed for the different fuel pathways to completely understand the various impacting factors.
20

Energy simulation for improved ventilation system in a collection of Swedish multi-family houses

Zhang, Taoju January 2017 (has links)
Building sector takes a large part of Swedish domestic energy use. Swedish government had set goal that required energy consumption should decrease by 20% in year 2020 compared to 1995. Public house companies will play an important role in the process.  The work studies a typical Swedish Multi-family dwelling, built in 1960s and belonging to Älvkarlebyhus AB. These buildings were given enhanced air tightness in recent years which yielded a good result. This work focuses on improving the old ventilation system and decreasing energy consumption.  Building energy simulation tool IDA ICE was used to model the object building and to examine the effectiveness of the new system. The tested energy efficiency measures include upgraded ventilation system with heat exchanger, and the installation of demand control (DCV) to the ventilation. Both energy, environmental and economic aspects are considered in the study. The result showed the total energy demand decreased 35% with renovation. Total investment for all buildings correspond to 5 760 000 SEK. New system could save 237 872 SEK/year and payback time will be 24 years.

Page generated in 0.029 seconds