• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 587
  • 309
  • 16
  • 8
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 1115
  • 1115
  • 816
  • 306
  • 186
  • 153
  • 133
  • 127
  • 127
  • 110
  • 106
  • 105
  • 103
  • 99
  • 85
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Systemanalys av termisk samverkan mellan solceller och värmepump i flerbostadshus : Modellering och scenarioanalyser av innovativa systemutformningar samt  väderförhållanden med fokus på energi, klimat och ekonomi / System analysis of thermal cooperation between photovoltaics and exhaust air heat pump in apartment buildings : Modeling and scenario analysis of innovative system configurations and weather conditions with focus on energy, climate and economy

Green, Gustav January 2018 (has links)
Att arbeta mot minskad klimatpåverkan är centralt i dagens samhälle och ett måste för en hållbar utveckling. Ett omdiskuterat område är utfasningen av äldre, fossilt baserad, elproduktion för att ge plats åt förnybar elproduktion. Det vill säga ”grön el”. Solceller, en typ av grön el, har under de senaste åren blivit billigare. Detta kan ses på den ökade installerade effekten varje år bland flerbostadshus från att Sverige började med ekonomiska bidrag till solceller år 2006. Solceller får en ökad verkningsgrad av högre instrålning men även av en lägre celltemperatur. Samtidigt gynnas värmepumpar, som är vanligt för fastighetsuppvärmning, av ett ökat COP om den tillkopplade köldbäraren når värmepumpen med en högre temperatur vilket ökar potentialen att leverera värme. Då solceller gynnas av låg temperatur och värmepumpen gynnas av hög köldbärartemperatur finns det ett motiv för värmeväxling mellan enheterna – termisk samverkan. Syftet med examensarbetet blir att öka kunskap genom en systemanalys om hur solceller och värmepump kan samverka i ett energi- och kostnadseffektivare energisystem via termisk samverkan. I examensarbetet har två modeller av en fastighets energisystem byggts; med och utan termisk samverkan mellan värmepump och solceller. I energisystemet ingår fastighetens värme- och elsystem och är placerat i Karlstad. Värmesystemet består av frånluftvärmepump med fjärrvärme som spets och elsystemet består av fastighets- och hushållsel samt solceller. Resultat från modellerna jämförs med varandra med fokus på inköp av el och fjärrvärme, försäljning av el, koldioxidutsläpp och ekonomi. Resultatet från båda modellerna har även undersökts och jämförts i 8 scenarier. Scenarierna ändrar på systemutformning och väderfaktorer, exempelvis optimering av elproduktion eller byte av geografisk placering. Modellerna är byggda i Matlabs modelleringsprogram Simulink och grundas på energibalanser. Data fås från intressenten av detta arbete (HSB Värmland), produktblad för solpanelerna (där en solpanel är en matris av solceller), egna mätningar från fastigheten, antaganden och liknande försök från vetenskapliga artiklar. Koldioxidutsläpp från el baseras på marginalelsprincipen. Resultatet av ett energisystem i en fastighet i Karlstad med termisk samverkan mellan solceller och frånluftvärmepump bidrar till minskat koldioxidutsläpp på 1239 kg/år och 448 kg/år för kort respektive lång sikt. Årskostnaden minskar med 290 kr/år vilket gör det svårt att motivera termisk samverkan ur ett ekonomiskt perspektiv. Detta för att investeringskostnaden maximalt får nå 7250 kr över 25 år för att termisk samverkan ska vara ekonomiskt gynnsamt. Inköpet av el minskar och försäljningen av el samt inköpet av fjärrvärme ökar. Årsmedelvärdet för värmepumpens COP ökar från 4,56 till 5,30 och årsmedelvärdet för solcellernas verkningsgrad ökar från 21,15 till 21,16 %. Ett samverkande system har potentialen att bli mer attraktivt om elpriset ökar. I scenarioanalysen uppkommer ett scenario, när elproduktionen från solcellerna optimeras, som medför betydligt lägre årskostnad från ett termiskt samverkande system jämfört med andra scenarier. Detta scenario medför reglering av köldbärarflöde, värmeväxlararea och tillsätter extern kylning. Årskostnaden av ett termiskt samverkande system minskas med 1920 kr/år till följd av denna systemutformning. Eftersom flera regleringar behöver göras anses detta scenario som komplicerat att få praktiskt genomförbart. Ett scenario, när det samverkande systemet utformas utan frånluftåtervinning, är potentiellt ekonomiskt gynnsamt för nybyggnation av värmesystem. Scenariot medför att ett termiskt samverkande system ger minskad årskostnad jämfört mot ett icke-samverkande system med frånluftåtervinning. Det förväntas att nya värmesystem kan konstrueras utan frånluftåtervinning och därmed minska investeringskostnaden för nybyggnation. Eftersom investerings- och driftkostnader av frånluftåtervinning inte har hanterats i detta arbete behövs det vidare studier. Termisk samverkan blir mer gynnsamt i varmare länder än Sverige men bidrar inte till minskat koldioxidutsläpp i lika hög grad. Det uppkom att om energisystemet placeras i Kiruna ökar både årskostnaden och koldioxidutsläppen. När energisystemet placeras i Lund var resultaten liknande mot i Karlstad. Detta för att klimatdata från Lund efterliknar klimatdata från Karlstad. När energisystemet placerades och jämfördes i Aten (Grekland) minskade årskostnaden och bidrog till minskat koldioxidutsläpp. Årskostnaden för systemet placerat i Aten blev lägre än årskostnaden i Lund men koldioxidutsläppet i Aten blev högre än koldioxidutsläppet i Lund. Eftersom systemet i Lund medför lägre koldioxidutsläpp än i Kiruna och Aten kan det finnas en brytpunkt i lokalt klimat där koldioxidutsläppen är som lägst från ett samverkande system. / It is discussed in today’s society to reduce the carbon dioxide emissions by replacing old, fossil fueled, electricity production with new, renewable and “green” ways of producing electricity. Photovoltaics have lately become cheaper which can be seen by looking at the increase in installed electric power from apartment buildings for each year in Sweden. This is mainly caused by the introduction of subsidies towards photovoltaics in 2006 from the Swedish state. The efficiency of photovoltaics increases when the solar radiation is higher but decreases with increasing cell temperature of the photovoltaic cells. The COP of heat pumps, which is commonly used for heating apartment buildings, is increased with increased brine temperature which increases the potential of heating. This means that photovoltaics can benefit from a cold brine while heat pumps can benefit from a higher brine temperature by heat exchanging with photovoltaics. Thermal cooperation is possible. The purpose of the study is to do a system analysis of how photovoltaics and heat pump can cooperate in an energy and cost-efficient energy system through thermal cooperation. Two models, of an energy system in an apartment building located in Karlstad, have been built in this study; with and without thermal cooperation between heat pump and photovoltaics. The energy system is divided in two subsystems; heating and electricity system. The heating system consists of an exhaust air heat pump with district heating during peaks and the electricity system consists of the electricity demand from the apartment building and photovoltaics. The results of the models are compared with focus on purchase of electricity and district heating, selling of electricity, carbon dioxide emissions and economical costs. The results from the models have also been analyzed and compared in 8 different scenarios. The scenarios change the configuration of the energy system and weather factor. Examples of scenarios that have been analyzed are optimization of electricity production and change of geographical location. The models are built in Matlabs modeling program Simulink and are based on energy balances. Data is gathered with help from HSB Värmland, product sheet of the solar panels (one solar panel is a matrix of several photovoltaics), own measurements, assumptions and similar studies from scientific articles. Carbon dioxide emissions are based on the merit order curve for electricity production (“marginal-energy-principle”). An energy system in Karlstad with thermal cooperation, between photovoltaics and exhaust air heat pump, contributes to reduced carbon dioxide emissions by 1239 kg/year (short term) and 448 kg/year (long term). However, it is hard to warrant thermal cooperation from an economical perspective with th. This is because the investment costs of an energy system with thermal cooperation is only allowed to reach a maximum of 7250 kr over 25 years for it to be economically profitable. The amount of electricity that needs to be purchased decreases and the amount of electricity that is sold as well as district heating purchased increases. The yearly average COP of the heat pump increases from 4,56 to 5,30 and the yearly average solar panel efficiency increases from 21,15 to 21,16 %. If the price of electricity increases, then thermal cooperation will become more profitable. One scenario from the scenario analysis stands out in comparison with other scenarios due to reduced yearly costs from a cooperating system of 1920 kr/year. This is when the electricity production from the photovoltaics are optimized. However, this scenario requires adjustments in brine flow, heat exchanger area and external cooling which can cause practical complications. One scenario has the potential to become economically profitable with the construction of new heating systems. This is when the exhaust air recycling is removed from the heating system. The removal of exhaust air recycling in a cooperating system contributes to lower yearly costs but not as low as a cooperating system with exhaust air recycling. However, this might mean that the construction of new heating systems can be profitable without exhaust air recycling because the investment cost of the exhaust air recycling is removed. Since this study has not taken investment and operating costs of exhaust air recycling into account, further studies are needed to determine this. Thermal cooperation is more profitable in warmer countries than Sweden but does not contribute to as low reduction in carbon dioxide emissions. When the energy system is placed in Kiruna, Sweden, it causes both the yearly cost and carbon dioxide emissions to increase. The energy system is placed in Lund, Sweden, yielded similar results as if the system was placed in Karlstad, Sweden. The yearly cost and carbon dioxide emissions decreased when the energy system was placed in Athens, Greece. However, when comparing the energy systems in Athens and Lund, Athens had the lower yearly cost but higher carbon dioxide emissions. Since the energy system placed in Lund contributes to the lowest carbon dioxide emissions in comparison to both Kiruna and Athens then there might be a break point in relation to local climate where the emissions are the lowest possible.
32

Automated Testing of HVDC Control & Protection Systems : A study on Automated Regression Testing

Halvarsson, Hampus January 2018 (has links)
Testing is an important activity when developing a system. Testing requires resources in terms of time, labour and money. By correctly automating the tests, the development time may either be shortened or there will be a possibility to run more tests. ABB in Ludvika has developed MACH, a control & protection system for HVDC (high power electrical transmission over long distances) applications. During development of the control & protection system for each HVDC project, which are all unique, the system is today tested manually, which takes considerable time.This thesis project studies the possibility of automating parts of the MACH system tests, by investigating current testing procedures, the control & protection system itself, and how a test tool may interact with the system. Using this information a test framework, aimed towards test automation, was created, and a simple test execution tool was developed. A new test case, a combination of multiple smaller test cases, ranon the system using the test execution tool.The outcome proves the proof of concept of automating parts of the system tests.The economics and the scope of the automated testing however, is dependent on how automation is implemented.
33

Energieffektivisering av ventilationssystem i en skola : Behovsstyrd ventilation i fastigheten Eken i Karlstad kommun / Energy Efficiency of Ventilation System in a School : Demand-Controlled Ventilation for a Building in Karlstad

Johansson, Josefina January 2018 (has links)
I Sverige står bostads-och servicesektorn för nästan 40 % av den totala energianvändningen och därför har många byggnader behov av energieffektivisering. Arbetet utgår från Eken, en del av Karlbergsskolan i centrala Karlstad, som är en kulturmärkt byggnad från 1890-talet. I byggnaden pågår gymnasieutbildning, förskola samt idrottsverksamhet i en gymnastiksal. Byggnaden ventileras i dagsläget med konstant luftflödessystem (CAV). Behovsstyrd ventilation (DCV) innebär att reglera ventilationen efter närvaro och behov, genom att upprätthålla en bra luftkvalité och termisk komfort och samtidigt effektivisera energiförbrukningen. Syftet med detta arbete var att undersöka hur behovsstyrning med IR-sensorer eller CO2-sensorer kan påverka energiförbrukningen och driftkostnader av Ekens ventilationssystem, samt undersöka hur innetemperaturen påverkas vid CO2-reglering jämfört med befintligt driftfall. Målet var att beräkna årliga energibesparingar (MWh/år) och investeringsutrymme (kr) till utgifter som uppkommer vid ombyggnation av dagens CAV-system. Ett ytterligare mål var att beräkna innetemperatur vid olika fall då förutsättningar som rumsplacering, solinstrålning, utetemperatur och intern personbelastning varieras och beroende på CO2-reglerat eller konstant luftflöde. Energibesparingar avseende energi till fläktar och värmebatterier, beräknades i Excel baserat på olika luftflöden beroende på personbelastning. Investeringsutrymmet beräknades utifrån årliga besparingar av driftkostnader. Innetemperaturer beräknades i en dynamisk simuleringsmodell för tre dygn och tre rum med olika förutsättningar. Energibesparingar för IR- och CO2-reglering av ventilationssystemet resulterade i 53 MWh/år (-44 %) respektive 77 MWh/år (-64 %) jämfört med befintligt CAV-system. Efter 15 år bidrog IR- och CO2-reglering till besparingar på ca 520 kkr (IR) respektive 750 kkr (CO2). Skillnaden på innetemperaturen vid behovsstyrt flöde jämfört med konstant luftflöde var lägre än en grad i majoriteten av fallen. Den största skillnaden på 2,7 °C uppstod en solig dag för ett rum med fönster mot sydost. Behovsstyrning är uppenbart fördelaktigt för byggnaden ur energi- och miljöperspektiv. Investeringskostnaden för de två olika metoderna är troligtvis ungefär lika stora och hur ekonomiskt lönsam investeringen är beror på återbetalningstiden. Luftflödesreglering leder inte till några större problem för rumstemperaturen och i annat fall borde temperaturproblem kunna åtgärdas genom solavskärmning eller temporärt ökat ventilationsflöde. / In Sweden, the housing and services sector accounts for close to 40 % of the total energy use, hence why many buildings require energy efficiency. This study is based on the Eken building, which is a historical building from the 1890s, a part of Karlbergsskolan in central Karlstad. The building operates with a secondary education, preschool and a gymnasium. It is currently ventilated by a constant air volume-system (CAV). Demand controlled ventilation (DCV) involves controlling the ventilation according to occupancy and requirement, by maintaining acceptable indoor air quality and thermal comfort, while simultaneously decreasing the energy consumption. The purpose of this study was to investigate how demand-controlled ventilation can improve energy efficiency and operating costs of the ventilation system in Eken, using either IR- or CO2-sensors, as well as investigating how indoor temperature is affected by reduced air flow due to CO2-controlled ventilation. The goal was to calculate the annual energy savings (MWh/year) and anticipate the investment range (SEK) for expenses incurred in rebuilding the current CAV-system. An additional goal was to calculate indoor temperature due to CO2-controlled airflow or constant airflow (CAV) under different circumstances. We did this by varying conditions such as location, solar radiation, outdoor temperature and occupancy. Energy savings for fans and heaters were calculated in Excel, based on different airflows depending on occupancy. The investment range was calculated on the basis of annual savings of operating costs. Indoor temperatures were calculated with a dynamic simulation model for three days, in three rooms, with different conditions. Energy savings for an IR- or CO2-controlled ventilation system resulted in 53 MWh/year (- 44 %) and 77 MWh/year (-64 %) respectively compared to consisting CAV-system. After 15 years, IR- and CO2-regulation contributed to savings of about 520 kkr (IR) and 750 kkr (CO2). The difference of indoor temperature during the demand-controlled flow rate in comparison to constant airflow, was less than one degree in the majority of cases. The biggest difference of 2,7 °C occurred on a sunny day in a room with windows facing southeast. Demand-controlled ventilation is clearly beneficial from an energy- and environmental perspective. The investment cost of the two different methods is probably about the same range and the economic profit depends on the payback period. Airflow regulation does not lead to any major temperature problems, however if there are any problems they may be addressed by solar shielding or temporarily increased air flow rate.
34

Prognostisering av fjärrvärmekunders effektförbrukning : Metod för hur Stockholm Exergi kan öka kvaliteten i simuleringsmodeller av fjärrvärmenätet

Stålnacke, Joakim January 2018 (has links)
A method for predicting consumer heat power usage was examined, for the purpose of implementing such a method in simulation models of the district heating distribution network at Stockholm Exergi. This was to enhance the results of such simulations and aid the company’s work with distribution optimization. A method based on power signatures, which are models currently used in many applications, was examined. The method aspired to describe the consumption patterns of consumers over time and temperature, categorize consumers according to these patterns and then implement the results in the simulation models. The addition of a time parameter to the signatures resulted in an improved and more consistent prediction quality. Categorizing the consumers mathematically caused only a minor decrease in the prediction quality and resulted in better prediction quality than the categorization system currently used. Stockholm Exergi is adviced to keep examining mathematical categorization of consumers as such a categorization has several advantages to the one currently used. It is also recommended to examine options to Termis for performing individual consumer predictions as the program is not well suited for it. Such options could be other software or add-ons to Termis which make such predictions more viable.
35

Utvärdering av behovsstyrt ventilationssystem i skolbyggnad : Energieffektivisering av ventilation

Kindblom, Johan January 2017 (has links)
New buildings today are built with great care and contain modern technology in order to minimize the energy cost and therefore also their upkeep. This project has tried to evaluate the effect of a smart demand-controlled ventilation system which measures the actual airflow demand and adjusts accordingly. By using exact data from a system inside a school and studying the building itself, an accurate model of the school was created. Using this model the demand-controlled system was compared to a conventional, constant flow, system. The results showed that the demand-controlled system reduced the specific energy consumption of the school by 34 % and that the systems components could be downsized to 70 % of the original size. This means that this kind of integration of control technology is a powerful tool to further increase the energy efficiency in buildings.
36

Energy flow mapping of a sports facility : Energy flow mapping and suitable key performance indicator formulation for Rocklunda sports facility

Eskilsson, Anton January 2017 (has links)
No description available.
37

Evaluation of energy conserving measures in buildings connected to a district heating system : case studies in Gävle, Sweden

Gustafsson, Mattias January 2016 (has links)
When different energy conserving measures are implemented for reducing energy use in buildings and the buildings are connected to district heating systems, it is important that an overall system analysis is made which takes into account the effects of total change of energy use due to the energy conserving measures. The method applied in this thesis uses hourly production data for the different production units in the district heating system in Gävle, Sweden. The merit order of the different production units is dependent on the electricity spot market price. To calculate the merit order, hourly data for the electricity price is used. The marginal production unit can then be determined for each hour of the investigated year. This thesis analyzes five different energy conserving measures in a multi-dwelling building regarding how they affect the marginal production units in the district heating system. For CO2 emission evaluations, two different combinations of heat and electricity conserving measures are compared to installation of an exhaust air heat pump. This thesis also analyzes how the configuration of the electric meter affects the measured amount of self-consumed and produced excess electricity for a single-family house and for two multi-dwelling buildings of different sizes. The results show that the use of electricity is the most important objective to consider. The increased use of electricity for operation of the heat pump contributes to an increase of global CO2 emissions and the electricity produced by the solar photovoltaic installation contributes to a decrease of global CO2 emissions. The results also show that the configuration of the electric meter is important for the single-family house but negligible for the multi-dwelling buildings. The amount of produced excess electricity is high for all buildings, which means that the economic value of produced excess electricity is important for a profitable installation.
38

Energiutvinning från deponigas : På Holmby återvinningscentral / Energy Recovery from Landfill Gas : At Holmby Recyclingstation

Nilsson, Aron January 2017 (has links)
I det här arbetet har det undersökts huruvida mängden deponigas i deponin vid Holmby återvinningscentral i Sunne är tillräcklig för att täcka värmebehovet för ett antal lokaler i närheten, om deponigasen kan ge säljbar el, och om detta kan göras ekonomiskt lönsamt.  De processer som har undersökts är en gasmotor, en gasturbin och gaspanna från Biogassystems och en Stirlingmotor från Cleanergy. Dessa har tillsammans med en ackumulatortank simulerats för att undersöka om de kan klara av att leverera den värme som behövs för att täcka behovet utan att bli för dyra och vilka utsläpp det resulterar i. Det finns i dagsläget ett uttagssystem för deponigasen och all energi facklas i nuläget bort. Energin borde tas tillvara då den kan ersätta andra mer miljöskadliga energikällor. Utöver resultaten i det här arbetet tillkommer kostnaderna och miljöpåverkan för distributionen av den producerade värmen och elen. Arbetet är upplagt så att det produceras den värme som behövs för att täcka värmebehovet. Värmebehovet styr därmed hur mycket el som produceras, då ingen el produceras när det inte finns något behov av värme och den el som inte används till eget bruk säljs. För beräkningar har programmet Matlab och funktionen Simulink använts. Det visade sig att alla metoder med deras respektive verkningsgrader och andra begränsningar klarade av att producera värme i den grad att de klarade att täcka det värmebehov som satts upp samtidigt som en hel del el skulle kunna säljas med tre av metoderna, dock inte med gaspannan då den inte producerar någon el överhuvudtaget. Gasturbinen blir klart dyrast på grund av dess höga pris och låga el-verkningsgrad. Det är därmed tveksamt om det skulle vara lönsamt att satsa på en gasturbin som lösning för att ta om hand om energin i deponigasen. Den rekommenderade lösningen är att använda sig av en gaspanna om det inte finns något intresse av att sälja el då den utan några problem klarar av att leverera den värme som behövs samtidigt som den är billigast. Om det däremot finns ett intresse av att sälja el hade en stirlingmotor varit att föredra då den klarar av värmebehovet samtidigt som den producerar el som kan säljas. Detta i kombination med att den inte är lika känslig för föroreningarna i deponigasen som gasmotorn gör den till det bästa alternativet för en kombinerad värme- och elproduktion. / In this study a evaluation has been conducted to whether the amount of landfill gas in the landfill at Holmby recycling station in Sunne could be used to cover the heat needed to heat up a couple of buildings nearby, how much electricity that would be produced in the process and if there would be any economic gain in doing so. The machinery used in this study is a natural gas engine, gas turbine and a gas fired boiler from Biogas Systems and a Stirling engine from Cleanergy. These have been evaluated together with a heat storage tank to see if they could produce enough heat for the buildings. The system in place today only uses a torch to dispose the gas and no energy from the gas is used. The energy in the gas should be taken care of because it could replace other energy sources that are worse for the environment. Beyond the results in this study you will have to consider the distribution of the produced heat and electricity. The main thought is that you will produce the heat needed and sell the electricity you don’t use yourself. The calculations have been conducted in Matlab and the tool Simulink. The results showed that you can produce enough heat with all the examined apparatuses, with their efficiencies and other restrictions at the same time as you could sell a fair amount of electricity by using three of them, the only exclusion is the gas fired boiler as it doesn’t produce any electricity. The gas turbine becomes very expensive due to its price and the relatively small electric efficiency. It is a possibility that you won’t make any money from a system with a gas turbine. A gas fired boiler is the recommended machinery if there is no interest in electricity production due to its ability to produce the heat needed at the same time as it is the cheapest of the tested machinery. If on the other hand there is an interest in electricity production the Stirling engine would be the recommended machinery. The Stirling engine manage the heat needed in the buildings at the same time as it produces electricity that could be sold. The reason that the Stirling motor is the preferred machinery in this case is that it is not as sensitive to the pollutions in the landfill gas as the natural gas combustion engine.
39

Efficiency comparison between Heat Pump andMicro CHP located in two different location inSweden

Al-samuraaiy, Omar January 2016 (has links)
Efficiency of a ground source heat pump with thermal capacity of 6 kW determined in two differentlocations in Sweden. In the north side with low average temperature which could go down to -10 ᵒCand in the south side, with low average temperature with +2 ᵒC. The heat pump has refrigerantR407c, which could be connected to both, ground source heat feeding methods the horizontal, andthe vertical model. The heat pump give heat for both space heating and domestic hot watercompared the micro CHP which has thermal capacity of 12.5 kW and electrical capacity of 4.4 kW. Ithas IC engine which means the engine has internal combustion work. It also works with two kinds offuel, natural gas and propane MOZ 92; the energy and exergy of the fuel in micro CHP feeding thethermal process by heat. That heat used for space heating and domestic hot water after going outthe process for the cooling which keep the heat in storage tank and it heat the liquid to the gas to beused in the turbine to produce the electricity. The two locations in the north and south of Swedenwill influence the thermal operation and that influence power used for compressor for heat pumpand somehow the pump in the micro CHP. The study shows that the different in exergy and energyefficiency between these two heat technologies by located them in the locations. Higher efficiencyof the micro CHP which give the advantage of use Micro CHP some technology give the benefit byusing the fuel for producing the heating and electricity , the benefit which give the customer manybenefit shows in the study. That’s comparing with the heat pump which is large use in Sweden. Inthis paper will introduce Micro CHP as heating technology which has been used in the rest of Europecould be used in Sweden for future heating technology with electricity producing, shall change thecostumer from energy consumption costumer to producing costumer.
40

An Energy Audit of Kindergarten Building in Vallbacksgården

Liu, Xiaojing, Zhang, Taoju January 2015 (has links)
Energy consumption rises continuously every year. Globally, buildings count for half of electricity consumption and 20%-40% of total energy consumption. Building energy sector consumed 40% of total energy use in Sweden. The vital of reduce energy consumption is to enhance building efficiency. This energy audit work investigates how energy consumes of kindergarten building in Vallbacksgården. Then give out cost effective suggestions to improve energy efficiency for object building. The result shows total amount of energy input of the building is equal to 241.9 MWh. While district heating takes the largest part of energy input that correspond to 188.9 MWh (78%), and cost around 123500 Kr annually. Furthermore, energy 38.0 MWh (16%) is contributed by solar radiation, which becomes second largest source of energy input. Finally, internal heat generation is the smallest contributor of energy input which counts 15.0 MWh (6%). For energy output, majority of heat loss is leaded by transmission losses. It cost 190.4 MWh per year that shares 79% of total energy output. Nature ventilation losses of object building shares 17% of total heat output which is 41.7 MWh. Mechanical ventilation and hot tap water have energy consumption with 7.8 MWh and 2.0 MWh respectively. They take rest 4% of total energy output. According to the finding, several reasonable suggestions will be given. Firstly, for the costless solution, decreasing indoor temperature 1℃ or 2 ℃ is able to reduce heating demand 9.0 MWh or 18.1 MWh annually. It will reduce CO2 emission 131859g- 266070 g, and save 5274 – 10642 SEK per year. Secondly, substitute district heating systems by ground source heat pump is an environmental solution. Using ground source heat pump has priority of environment, which lower CO2 emission 1909200 g/year and save 68262 SEK/year by analyze. Investment for this solution is 979000 SEK and the payback time takes 14.3 year. Replace old windows is a moderate solution of cost. Substitution by using energy glass can reduce 20.9 MWh heating demand and 307377 g CO2 every year. New energy glass windows can cut 13591 SEK for district heating every year. The renovate investment and payback time are more than 159732 SEK and 11.8 year respectively.

Page generated in 0.057 seconds