• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2287
  • 849
  • 442
  • 188
  • 121
  • 84
  • 56
  • 55
  • 40
  • 40
  • 37
  • 29
  • 25
  • 24
  • 19
  • Tagged with
  • 5043
  • 989
  • 796
  • 600
  • 529
  • 496
  • 492
  • 468
  • 465
  • 434
  • 428
  • 336
  • 302
  • 298
  • 296
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Traveling waves and impact parameter correlations in QCD beyond the 1D approximation

Haley, Matthew Troy 28 September 2011 (has links)
The theory of quantum chromodynamics (QCD) predicts that at high energies, such as those investigated in deep inelastic scattering experiments, hadrons evolve into dense gluonic states described by the BFKL equation, and at very high densities, the more general BK equation. In certain approximations, the BK equation reduces to a well studied reaction-diffusion type nonlinear partial differential equation, the FKPP equation, for which analytical results are known. In this work, we model the BK equation using a classical branching process rooted in the dipole model of QCD evolution. Because the BK equation is inherently two dimensional, our model allows dipole impact parameters to occupy the full transverse space. A one dimensional limit of this model is studied as well. Results are compared with the predictions of the FKPP equation, and correlations between evolution at different impact parameters are presented. The general features of previously studied one dimensional impact parameter models are verified, but the details are refined in what we believe to be a more accurate model. / text
282

UNSTABLE STATES WITH SIMPLE POTENTIALS

Kingman, Robert Earl, 1938- January 1971 (has links)
No description available.
283

Singularity Formation in Nonlinear Heat and Mean Curvature Flow Equations

Kong, Wenbin 15 February 2011 (has links)
In this thesis we study singularity formation in two basic nonlinear equations in $n$ dimensions: nonlinear heat equation (also known as reaction-diffusion equation) and mean curvature flow equation. For the nonlinear heat equation, we show that for an important or natural open set of initial conditions the solution will blowup in finite time. We also characterize the blowup profile near blowup time. For the mean curvature flow we show that for an initial surface sufficiently close, in the Sobolev norm with the index greater than $\frac{n}{2} + 1$, to the standard n-dimensional sphere, the solution collapses in a finite time $t_*$, to a point. We also show that as $t\rightarrow t_*$, it looks like a sphere of radius $\sqrt{2n(t_*-t)}$.
284

Singularity Formation in Nonlinear Heat and Mean Curvature Flow Equations

Kong, Wenbin 15 February 2011 (has links)
In this thesis we study singularity formation in two basic nonlinear equations in $n$ dimensions: nonlinear heat equation (also known as reaction-diffusion equation) and mean curvature flow equation. For the nonlinear heat equation, we show that for an important or natural open set of initial conditions the solution will blowup in finite time. We also characterize the blowup profile near blowup time. For the mean curvature flow we show that for an initial surface sufficiently close, in the Sobolev norm with the index greater than $\frac{n}{2} + 1$, to the standard n-dimensional sphere, the solution collapses in a finite time $t_*$, to a point. We also show that as $t\rightarrow t_*$, it looks like a sphere of radius $\sqrt{2n(t_*-t)}$.
285

Bounded Control of the Kuramoto-Sivashinsky equation

Al Jamal, Rasha January 2013 (has links)
Feedback control is used in almost every aspect of modern life and is essential in almost all engineering systems. Since no mathematical model is perfect and disturbances occur frequently, feedback is required. The design of a feedback control has been widely investigated in finite-dimensional space. However, many systems of interest, such as fluid flow and large structural vibrations are described by nonlinear partial differential equations and their state evolves on an infinite-dimensional Hilbert space. Developing controller design methods for nonlinear infinite-dimensional systems is not trivial. The objectives of this thesis are divided into multiple tasks. First, the well-posedness of some classes of nonlinear partial differential equations defined on a Hilbert space are investigated. The following nonlinear affine system defined on the Hilbert space H is considered z ̇(t)=F(z(t))+Bu(t), t≥0 z (0) = z0, where z(t) ∈ H is the state vector and z0 is the initial condition. The vector u(t) ∈ U, where U is a Hilbert space, is a state-feedback control. The nonlinear operator F : D ⊂ H → H is densely defined in H and the linear operator B : U → H is a linear bounded operator. Conditions for the closed-loop system to have a unique solution in the Hilbert space H are given. Next, finding a single bounded state-feedback control for nonlinear partial differential equations is discussed. In particular, Lyapunov-indirect method is considered to control nonlinear infinite-dimensional systems and conditions on when this method achieves the goal of local asymptotic stabilization of the nonlinear infinite-dimensional system are given. The Kuramoto-Sivashinsky (KS) equation defined in the Hilbert space L2(−π,π) with periodic boundary conditions is considered. ∂z/∂t =−ν∂4z/∂x4 −∂2z/∂x2 −z∂z/∂x, t≥0 z (0) = z0 (x) , where the instability parameter ν > 0. The KS equation is a nonlinear partial differential equation that is first-order in time and fourth-order in space. It models reaction-diffusion systems and is related to various pattern formation phenomena where turbulence or chaos appear. For instance, it models long wave motions of a liquid film over a vertical plane. When the instability parameter ν < 1, this equation becomes unstable. This is shown by analyzing the stability of the linearized system and showing that the nonlinear C0- semigroup corresponding to the nonlinear KS equation is Fr ́echet differentiable. There are a number of papers establishing the stabilization of this equation via boundary control. In this thesis, we consider distributed control with a single bounded feedback control for the KS equation with periodic boundary conditions. First, it is shown that sta- bilizing the linearized KS equation implies local asymptotical stability of the nonlinear KS equation. This is done by establishing Fr ́echet differentiability of the associated nonlinear C0-semigroup and showing that it is equal to the linear C0-semigroup generated by the linearization of the equation. Next, a single state-feedback control that locally asymptot- ically stabilizes the KS equation is constructed. The same approach to stabilize the KS equation from one equilibrium point to another is used. Finally, the solution of the uncontrolled/state-feedback controlled KS equation is ap- proximated numerically. This is done using the Galerkin projection method to approximate infinite-dimensional systems. The numerical simulations indicate that the proposed Lyapunov-indirect method works in stabilizing the KS equation to a desired state. Moreover, the same approach can be used to stabilize the KS equation from one constant equilibrium state to another.
286

Pusiau reliatyvistinės radialinės Šriodingerio lygties su kuloniniu potencialu sprendinių struktūra / The structure of the solutions of semi-relativistic radial Shrodinger equation with coulomb potential

Blonskytė, Donata 03 September 2010 (has links)
Ištirta ketvirtos eilės paprastoji diferencialinė lygtis, sukonstruoti jos sprendiniai absoliučiai ir tolygiai konverguojančiomis laipsninėmis eilutėmis. / The fourth succession’s ordinary differential equation was explored, its assertions were constructed in to absolutely and gradually convergent degree rows.
287

Langevin Equation for Diffusion of Molecules Adsorbed on Surfaces

Shea, Patrick 22 July 2010 (has links)
Starting from a classical mechanical model, a set of Langevin equations for the surface diffusion of adsorbed molecules is developed. In contrast to previous work, these Langevin equations take full account of the rotations and internal vibrations of the adsorbed molecule. These equations are then applied to a stiff dimer diffusing in one dimension, and the results compared with previous calculations for the same system. It is shown that the modifications in our new approach give significantly different results than this previous calculation, and therefore must be taken into account in future calculations for systems of this kind. Next a new approximation method is developed by assuming that the motion of the molecule is confined to the lowest energy path between adsorption sites. This method is applicable to an arbitrarily complex molecule, and is complimentary to the first method, in that it can account for deformation of the molecule by the surface but not the internal vibrations of the molecule (whereas the first method accounts for internal vibrations but not deformation). This approximation method is then applied to a flexible dimer in two dimensions (one dimension along the surface and one perpendicular). The results are discussed and compared with those of the stiff dimer in one dimension, explaining and clarifying the difference between our results and those of previous calculations.
288

Applications of Dirac brackets to spinning particles

Luedtke, William David 12 1900 (has links)
No description available.
289

Extensions of sturm-liouville theory : nodal sets in both ordinary and partial differential equations

Yang, Xue-Feng 08 1900 (has links)
No description available.
290

Singularity and symmetry analysis of differential sequences.

Maharaj, Adhir. January 2009 (has links)
We introduce the notion of differential sequences generated by generators of sequences. We discuss the Riccati sequence in terms of symmetry analysis, singularity analysis and identification of the complete symmetry group for each member of the sequence. We provide their invariants and first integrals. We propose a generalisation of the Riccati sequence and investigate its properties in terms of singularity analysis. We find that the coefficients of the leading-order terms and the resonances obey certain structural rules. We also demonstrate the uniqueness of the Riccati sequence up to an equivalence class. We discuss the properties of the differential sequence based upon the equation ww''−2w12 = 0 in terms of symmetry and singularity analyses. The alternate sequence is also discussed. When we analyse the generalised equation ww'' − (1 − c)w12 = 0, we find that the symmetry properties of the generalised sequence are the same as for the original sequence and that the singularity properties are similar. Finally we discuss the Emden-Fowler sequence in terms of its singularity and symmetry properties. / Thesis (Ph.D.)-University of KwaZulu-Natal, Westville, 2009.

Page generated in 0.0302 seconds