Spelling suggestions: "subject:"[een] FEEDBACK LINEARIZATION"" "subject:"[enn] FEEDBACK LINEARIZATION""
11 |
Modelagem e implementação no ros de um controlador para manipuladores móveisBarros, Taiser Tadeu Teixeira January 2014 (has links)
Este trabalho apresenta a modelagem matemática para um manipulador móvel composto por uma base móvel (o robô móvel Twil) e um manipulador (o manipulador WAM da Barrett). Os modelos cinemático e dinâmico para a base móvel, manipulador e manipulador móvel são apresentados. Como o manipulador móvel é um sistema não linear, uma estratégia de controle baseada em linearização por realimentação da dinâmica da plataforma seguida por uma transformação não suave para tratar a não holonomicidade do modelo cinemático é proposta. Então o método de backstepping é utilizado para obter as entradas do modelo dinâmico. Um controlador de torque calculado é proposto para o manipulador, Estas técnicas de controle são utilizadas simultaneamente para controlar o manipulador móvel. A implementação dos controladores propostos, na forma de plugins para o gerenciador de controladores é feita no ROS, assim os controladores são executados em tempo real. A maioria dos controladores existentes no ROS são do tipo SISO baseados em controle PID e independentes para cada junta, sendo que neste trabalho controladores MIMO não lineares são implementados. / This work presents a mathematical modelling for a mobile manipulator composed by a mobile base (the Twil mobile robot) and a manipulator (the Barrett WAM manipulator). The kinematic and dynamic models for the mobile base, the manipulator and the mobile manipulator are presented. As the the mobilie manipulator is a non-linear system, a control strategy based on feedback linearization of the platform dynamics followed by a non-smooth transform to handle the non-holonomicity of its kinematic model is proposed. Then, the backstepping method is used to obtain the inputs for the dynamic model. A computed torque controller is proposed for the manipulador. These control techniques are used simultaneously to control the mobile manipulator. The implementation of the proposed controllers is done in ROS as plugins for the controller manager so that the controllers run in real-time. Most controllers existing in ROS are independent joint SISO controllers based on the PID control law while in this work MIMO non-linear controllers are implemented.
|
12 |
Controle baseado em linearização por realimentação dos estados aplicado a um servoposicionador pneumático / Feedback linearization control applied to a servo pneumatic positioning systemsSuzuki, Ricardo Murad January 2010 (has links)
Servoposicionadores pneumáticos são sistemas com tecnologia limpa, pois utiliza o ar comprimido como fluido de trabalho, leves, baratos e apresentam boa relação entre a capacidade de carga e a potência fornecida. Contudo, eles apresentam não-linearidades inerentes ao sistema pneumático, como efeitos devidos à compressibilidade do ar, ao atrito e vazamentos. Por estes motivos os controladores lineares mostram-se ineficientes para estes sistemas e é necessário utilizar estratégias de controle mais elaboradas, como, por exemplo, controle por redes neurais, controle com estrutura variável, controle adaptativo ou baseado em linearização por realimentação. Neste trabalho, foi estudada a aplicação do método de linearização por realimentação aliada ao método de controle por realimentação de estados e projeto por alocação de pólos ao controle de um servoposicionador pneumático. A estratégia de linearização por realimentação utiliza as estimativas das não-linearidades do modelo pneumático para linearizar o comportamento do servoposicionador pneumático e permitir o uso tanto de controladores lineares como não-lineares. A análise e prova das características de estabilidade completa do sistema em malha fechada com parâmetros conhecidos foi realizada, obtendo-se a garantia da convergência dos erros de seguimento para zero. Também foi realizada a análise de robustez, com a análise do comportamento do sistema frente às incertezas dos parâmetros estimados. Simulações e ensaios experimentais foram realizados para avaliar o comportamento e a eficiência do controlador proposto. Os resultados do controlador mostram-se promissores, com uma redução de aproximadamente 50% no erro de posição no seguimento de trajetória e na parada precisa com relação às técnicas lineares usualmente aplicadas a estes sistemas. Entretanto, no posicionamento percebe-se a influência do atrito, indicando que a sua compensação deve ser considerada em futuros desenvolvimentos. / Pneumatic positioning systems are clean, lightweight, cheap and present a good rate between the payload and supply power. However, this system shows a highly non-linear behavior, caused mainly by the compression of the air and the friction force. Linear strategies do not present an efficiently control in this kind of system and an improved design technique of control is needed, as neural network control, adaptive control, variable structure control or feedback linearization. In this work, it is developed the application of a feedback linearization control scheme integrated with the state feedback and pole placement method to a pneumatic positioning system. The feedback linearization strategy uses the non-linearities estimation of the pneumatic model to linearize the pneumatic positioning system and allow the use of linear or non-linear controls technique to control the behavior of the servopositioner. In this work, an analysis of the convergence properties of the closed-loop errors of the system when the proposed controller is employed is provided. It is shown that if the parameters are known than the system presents asymptotic convergence of the tracking errors to zero. The robustness properties analysis of the controller is also presented and the system behavior with the uncertainty parameters is analysed. Simulation and experimental tests were performed to assess the behavior and the efficiency of the feedback linearization control. The result of the proposed control shows to be promising on the reduction of position errors in trajectory tracking and in steadystate behavior. The tests show the presence of a strong influence of the friction force and that the friction comparation in techniques must be studied in futher developments.
|
13 |
Controle de força de um servoatuador hidráulico através da técnica de linearização por realimentaçãoSerrano, Miguel Ignácio January 2007 (has links)
Os atuadores hidráulicos são usados em muitas aplicações e áreas de trabalho devido à sua capacidade para manipular grandes forças com baixa inércia, pouca vibração e capacidade de trabalho por longos períodos de tempo. Entretanto, o maior problema no uso destes tipos de atuadores são as características dinâmicas tais como não-linearidade e variação de parâmetros, as quais dificultam seu controle em malha fechada. Assim, para controlar sistemas hidráulicos, é necessário o uso de modelos matemáticos não lineares e a aplicação de leis de controle complexas para obter um seguimento de trajetória com alta precisão. O objetivo principal deste trabalho é a obtenção de um sistema que siga com precisão as trajetórias de referência do tipo senoidais. Para tanto, este trabalho aborda o projeto de uma lei de controle por realimentação de estados (feedback linearization) combinada com o princípio do modelo interno para aplicar no sistema hidráulico de atuação de uma máquina de ensaios de fadiga. O princípio do modelo interno é aplicado utilizando um compensador dinâmico (que contém pólos imaginários com a mesma freqüência que o sinal de referência) num laço externo do sistema linearizado por realimentação de estados. Uma lei de controle do tipo realimentação de estados, considerando os estados do sistema linearizado e os do compensador dinâmico, é projetada para garantir estabilidade no sistema de malha fechada. A fim de avaliar a estratégia de controle proposta são discutidos e apresentados simulações do modelo experimental. / Hydraulic actuators are used in many applications due to their ability in driving large forces with low inertia and little vibration for a long period of time. However, the main problem in controlling these kinds of systems concerns their dynamics, which presents several nonlinearities and parameters variations. Thus, to control hydraulic systems, appropriated nonlinear models and complex control techniques to achieve a stable force regulation with a specified performance are necessary. The purpose of this work is the application of a feedback linearization scheme in the design of a force controller for a hydraulic actuator used in a fatigue test machine. The main control objective considered regards the achievement of sinusoidal force reference tracking. With this aim the internal model principle is applied by using a dynamic compensator (containing imaginary poles with the same frequency of the force reference) in an outer regulation loop. A state feedback control law, considering both the states of the feedback linearized hydraulic system and the ones of the dynamic compensator, is therefore designed in order to stabilize the whole closed-loop system. Experimental model identification and simulation control results are presented and discussed.
|
14 |
Controle baseado em linearização por realimentação dos estados aplicado a um servoposicionador pneumático / Feedback linearization control applied to a servo pneumatic positioning systemsSuzuki, Ricardo Murad January 2010 (has links)
Servoposicionadores pneumáticos são sistemas com tecnologia limpa, pois utiliza o ar comprimido como fluido de trabalho, leves, baratos e apresentam boa relação entre a capacidade de carga e a potência fornecida. Contudo, eles apresentam não-linearidades inerentes ao sistema pneumático, como efeitos devidos à compressibilidade do ar, ao atrito e vazamentos. Por estes motivos os controladores lineares mostram-se ineficientes para estes sistemas e é necessário utilizar estratégias de controle mais elaboradas, como, por exemplo, controle por redes neurais, controle com estrutura variável, controle adaptativo ou baseado em linearização por realimentação. Neste trabalho, foi estudada a aplicação do método de linearização por realimentação aliada ao método de controle por realimentação de estados e projeto por alocação de pólos ao controle de um servoposicionador pneumático. A estratégia de linearização por realimentação utiliza as estimativas das não-linearidades do modelo pneumático para linearizar o comportamento do servoposicionador pneumático e permitir o uso tanto de controladores lineares como não-lineares. A análise e prova das características de estabilidade completa do sistema em malha fechada com parâmetros conhecidos foi realizada, obtendo-se a garantia da convergência dos erros de seguimento para zero. Também foi realizada a análise de robustez, com a análise do comportamento do sistema frente às incertezas dos parâmetros estimados. Simulações e ensaios experimentais foram realizados para avaliar o comportamento e a eficiência do controlador proposto. Os resultados do controlador mostram-se promissores, com uma redução de aproximadamente 50% no erro de posição no seguimento de trajetória e na parada precisa com relação às técnicas lineares usualmente aplicadas a estes sistemas. Entretanto, no posicionamento percebe-se a influência do atrito, indicando que a sua compensação deve ser considerada em futuros desenvolvimentos. / Pneumatic positioning systems are clean, lightweight, cheap and present a good rate between the payload and supply power. However, this system shows a highly non-linear behavior, caused mainly by the compression of the air and the friction force. Linear strategies do not present an efficiently control in this kind of system and an improved design technique of control is needed, as neural network control, adaptive control, variable structure control or feedback linearization. In this work, it is developed the application of a feedback linearization control scheme integrated with the state feedback and pole placement method to a pneumatic positioning system. The feedback linearization strategy uses the non-linearities estimation of the pneumatic model to linearize the pneumatic positioning system and allow the use of linear or non-linear controls technique to control the behavior of the servopositioner. In this work, an analysis of the convergence properties of the closed-loop errors of the system when the proposed controller is employed is provided. It is shown that if the parameters are known than the system presents asymptotic convergence of the tracking errors to zero. The robustness properties analysis of the controller is also presented and the system behavior with the uncertainty parameters is analysed. Simulation and experimental tests were performed to assess the behavior and the efficiency of the feedback linearization control. The result of the proposed control shows to be promising on the reduction of position errors in trajectory tracking and in steadystate behavior. The tests show the presence of a strong influence of the friction force and that the friction comparation in techniques must be studied in futher developments.
|
15 |
Controle de força de um servoatuador hidráulico através da técnica de linearização por realimentaçãoSerrano, Miguel Ignácio January 2007 (has links)
Os atuadores hidráulicos são usados em muitas aplicações e áreas de trabalho devido à sua capacidade para manipular grandes forças com baixa inércia, pouca vibração e capacidade de trabalho por longos períodos de tempo. Entretanto, o maior problema no uso destes tipos de atuadores são as características dinâmicas tais como não-linearidade e variação de parâmetros, as quais dificultam seu controle em malha fechada. Assim, para controlar sistemas hidráulicos, é necessário o uso de modelos matemáticos não lineares e a aplicação de leis de controle complexas para obter um seguimento de trajetória com alta precisão. O objetivo principal deste trabalho é a obtenção de um sistema que siga com precisão as trajetórias de referência do tipo senoidais. Para tanto, este trabalho aborda o projeto de uma lei de controle por realimentação de estados (feedback linearization) combinada com o princípio do modelo interno para aplicar no sistema hidráulico de atuação de uma máquina de ensaios de fadiga. O princípio do modelo interno é aplicado utilizando um compensador dinâmico (que contém pólos imaginários com a mesma freqüência que o sinal de referência) num laço externo do sistema linearizado por realimentação de estados. Uma lei de controle do tipo realimentação de estados, considerando os estados do sistema linearizado e os do compensador dinâmico, é projetada para garantir estabilidade no sistema de malha fechada. A fim de avaliar a estratégia de controle proposta são discutidos e apresentados simulações do modelo experimental. / Hydraulic actuators are used in many applications due to their ability in driving large forces with low inertia and little vibration for a long period of time. However, the main problem in controlling these kinds of systems concerns their dynamics, which presents several nonlinearities and parameters variations. Thus, to control hydraulic systems, appropriated nonlinear models and complex control techniques to achieve a stable force regulation with a specified performance are necessary. The purpose of this work is the application of a feedback linearization scheme in the design of a force controller for a hydraulic actuator used in a fatigue test machine. The main control objective considered regards the achievement of sinusoidal force reference tracking. With this aim the internal model principle is applied by using a dynamic compensator (containing imaginary poles with the same frequency of the force reference) in an outer regulation loop. A state feedback control law, considering both the states of the feedback linearized hydraulic system and the ones of the dynamic compensator, is therefore designed in order to stabilize the whole closed-loop system. Experimental model identification and simulation control results are presented and discussed.
|
16 |
Modelagem e implementação no ros de um controlador para manipuladores móveisBarros, Taiser Tadeu Teixeira January 2014 (has links)
Este trabalho apresenta a modelagem matemática para um manipulador móvel composto por uma base móvel (o robô móvel Twil) e um manipulador (o manipulador WAM da Barrett). Os modelos cinemático e dinâmico para a base móvel, manipulador e manipulador móvel são apresentados. Como o manipulador móvel é um sistema não linear, uma estratégia de controle baseada em linearização por realimentação da dinâmica da plataforma seguida por uma transformação não suave para tratar a não holonomicidade do modelo cinemático é proposta. Então o método de backstepping é utilizado para obter as entradas do modelo dinâmico. Um controlador de torque calculado é proposto para o manipulador, Estas técnicas de controle são utilizadas simultaneamente para controlar o manipulador móvel. A implementação dos controladores propostos, na forma de plugins para o gerenciador de controladores é feita no ROS, assim os controladores são executados em tempo real. A maioria dos controladores existentes no ROS são do tipo SISO baseados em controle PID e independentes para cada junta, sendo que neste trabalho controladores MIMO não lineares são implementados. / This work presents a mathematical modelling for a mobile manipulator composed by a mobile base (the Twil mobile robot) and a manipulator (the Barrett WAM manipulator). The kinematic and dynamic models for the mobile base, the manipulator and the mobile manipulator are presented. As the the mobilie manipulator is a non-linear system, a control strategy based on feedback linearization of the platform dynamics followed by a non-smooth transform to handle the non-holonomicity of its kinematic model is proposed. Then, the backstepping method is used to obtain the inputs for the dynamic model. A computed torque controller is proposed for the manipulador. These control techniques are used simultaneously to control the mobile manipulator. The implementation of the proposed controllers is done in ROS as plugins for the controller manager so that the controllers run in real-time. Most controllers existing in ROS are independent joint SISO controllers based on the PID control law while in this work MIMO non-linear controllers are implemented.
|
17 |
Control of Quadcopter UAV by Nonlinear FeedbackYe, Haoquan 04 June 2018 (has links)
No description available.
|
18 |
Evacuation Distributed Feedback Control and AbstractionWadoo, Sabiha Amin 01 May 2007 (has links)
In this dissertation, we develop feedback control strategies that can be used for evacuating people. Pedestrian models are based on macroscopic or microscopic behavior. We use the macroscopic modeling approach, where pedestrians are treated in an aggregate way and detailed interactions are overlooked. The models representing evacuation dynamics are based on the laws of conservation of mass and momentum and are described by nonlinear hyperbolic partial differential equations. As such the system is distributed in nature.
We address the design of feedback control for these models in a distributed setting where the problem of control and stability is formulated directly in the framework of partial differential equations. The control goal is to design feedback controllers to control the movement of people during evacuation and avoid jams and shocks. We design the feedback controllers for both diffusion and advection where the density of people diffuses as well as moves in a specified direction with time. In order to achieve this goal we are assuming that the control variables have no bounds. However, it is practically impossible to have unbounded controls so we modify the controllers in order to take the effect of control saturation into account. We also discuss the feedback control for these models in presence of uncertainties where the goal is to design controllers to minimize the effect of uncertainties on the movement of people during evacuation. The control design technique adopted in all these cases is feedback linearization which includes backstepping for higher order two-equation models, Lyapunov redesign for uncertain models and robust backstepping for two-equation uncertain models.
The work also focuses on abstraction of evacuation system which focuses on obtaining models with lesser number of partial differential equations than the original one. The feedback control design of a higher level two-equation model is more difficult than the lower order one-equation model. Therefore, it is desirable to perform control design for a simpler abstracted model and then transform control design back to the original model. / Ph. D.
|
19 |
Controle não linear aplicado a malhas de controle com válvulas de alto atrito. / Nonlinear control applied to control loops with high friction valves.Baeza, João Rostaizer 18 February 2013 (has links)
As válvulas de controle são elementos finais muito importantes na indústria de processos, pois são as responsáveis por controlar a pressão em dutos ou vazão dos fluidos de processo, impactando diretamente na qualidade do produto final. Por serem elementos mecânicos móveis estão sujeitas ao atrito, uma não linearidade que quando excessiva, pode causar oscilações e erros na abertura da válvula. A presença de oscilações nas malhas de controle aumenta a variabilidade das variáveis de processo, o desgaste dos componentes e o consumo de energia, além de provocar o desperdício de materiais. O desenvolvimento de novas técnicas de compensação de atrito é fundamental para melhorar o desempenho das malhas de controle, sendo, portanto, de grande interesse para a indústria de processos industriais. Este trabalho apresenta o estudo de cinco compensadores não lineares: controlador rastreador de trajetória, controlador por modos deslizantes, controlador por modos deslizantes integrador, controlador por modelo interno não linear e controlador PI não linear, os quais são desenvolvidos desde a teoria à implementação prática em uma válvula de controle real. Os resultados obtidos, mostram que os controladores projetados apresentaram desempenho bastante satisfatórios, sendo que o controlador por modos deslizantes e por modos deslizante integrador apresentaram os melhores desempenho. / Control valves are very important final elements in process industry, due they are the responsible to control the pressure in pipelines and the flow of the process fluids, directly impacting in the quality of the final product. Due to the mechanical mobile elements, they are subjected to friction, a nonlinearity that can generate oscillations and errors in the valve aperture. Oscillations in the control loops increase the process variability, wear in the actuators and the power consumption, besides generating raw material waste. The development of new friction compensation techniques is very important to increase the control loops performance, therefore, it is of great interest for the process industry. This work presents the study of five nonlinear compensators: Trajectory tracking controller, sliding mode controller, sliding mode controller integrator, nonlinear internal model controller and nonlinear PI controller, which ones are developed from theory to practical implementation in a real control valve. The results show that the controllers presented satisfactory performance, where the sliding mode controller and sliding mode control integrator presented the best performance.
|
20 |
Dynamic path following controllers for planar mobile robotsAkhtar, Adeel 13 October 2011 (has links)
In the field of mobile robotics, many applications require feedback control laws that provide perfect path following. Previous work has shown that transverse feedback linearization
is an effective approach to designing path following controllers that achieve perfect path following and path invariance. This thesis uses transverse feedback linearization and
augments it with dynamic extension to present a framework for designing path following controllers for certain kinematic models of mobile robots. This approach can be used to
design path following controllers for a large class of paths. While transverse feedback linearization makes the desired path attractive and invariant, dynamic extension allows the
closed-loop system to achieve the desired motion along the path. In particular, dynamic extension can be used to make the mobile robot track a desired velocity or acceleration
profile while moving along a path.
|
Page generated in 0.05 seconds