• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 620
  • 172
  • 81
  • 28
  • 18
  • 10
  • 10
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • Tagged with
  • 1322
  • 1322
  • 1322
  • 486
  • 219
  • 154
  • 154
  • 145
  • 134
  • 126
  • 118
  • 118
  • 113
  • 98
  • 92
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Systematic Design of a Reciprocating Tubular Linear Generator

Lin, Hsin-nan 31 August 2009 (has links)
The purpose of this research is to provide a systematic design of a reciprocating tubular linear generator, which is suitable for harvesting solar thermal energy and ocean wave energy. For the structure design of this generator, the stator utilizes a slotless structure, while the mover utilizes the quasi-Halbach permanent magnet array. The operational magnetic fields are first estimated by magnetic equivalent circuit analysis, and then confirmed by three-dimensional finite element analysis. Also, parameters of the machine structure are optimized by Taguchi¡¦s method. The stator windings are selected iteratively by operational specifications and constraints. Finally, assessments of the machine operational behaviors are performed to achieve a complete and systematic design.
102

Corrosion at the head-neck taper interface of artificial hip joints

Dyrkacz, Richard Michael Ryan 01 1900 (has links)
The aim of this thesis was to determine if the size of the femoral head can influ-ence corrosion at the head-neck taper interface of total hip arthroplasty (THA) prosthe-ses. A hypothesis was developed that large head sizes could result in a greater toggling torque at the head-neck taper interface by increasing the distance between the centre of the femoral head to the centre of the neck taper. This could result in increased micromotion and deteriorate the passive oxide film along the head-neck taper interface; thus, making the taper interface vulnerable to corrosion. A retrieval analysis of 74 THA prostheses studied the corrosion damage at the head-neck taper interface. This study revealed that prostheses featuring 36 mm femoral heads had significantly greater head taper corrosion than prostheses with a 28 mm head. Finite element analysis was performed afterwards to identify if the use of large femoral heads can increase the micromotion at the head-neck taper interface due to a greater toggling torque. This experiment demonstrated that with a larger head size the micromotion at the head-neck taper interface increases. An in vitro corrosion fatigue study was performed afterwards following ASTM F1875-98. When applying an off-axis fatigue load, prostheses featuring a 36 mm femoral head displayed significantly more corrosion damage at the head-neck taper interface than those with a 28 mm femoral head. Axial fatigue loading was also applied; negligible corrosion damage at the head-neck taper interface was discovered in comparison to the prostheses that received an out of axis load. This verifies that the use of large femoral heads can result in increased head-neck taper corrosion due to a greater toggling torque.
103

Analysis of air-coupled system for exciting and sensing stress waves in concrete

Tsai, Yi-Te 01 July 2014 (has links)
Nondestructive testing (NDT) plays a more important role today in evaluating structural integrity of civil infrastructure. Impact-echo method (IE) is an effective stress wave based NDT method for locating defects in concrete structures. However, the contact requirement between sensor and concrete surface significantly limits the test speed and wide application of this method to large-scale structures such as bridges. Recent studies show the feasibility of air-coupled sensing, which eliminates the contact requirement and thus accelerates IE test. To further improve the test speed, a fully non-contact IE test using air-coupled sensing and excitation is investigated in this dissertation. This dissertation provides the theoretical basis required for developing an effective air-coupled IE method. For air-coupled sensing, 2D numerical simulations are first conducted to study the wave propagation in the air-solid system during IE tests. Visualized wavefield indicates that parabolic reflectors can effectively enhance the IE signal strength by focusing airborne IE waves to an air-coupled sensor. To maximize signal amplification, an analytical solution for the focused axial pressure response of a parabolic reflector with incident plane waves is derived. This solution is used to determine the reflector geometry that gives the highest focusing gain. For air-coupled excitation, a focused spark source with an ellipsoidal reflector is employed to excite stress waves in concrete. Numerical simulations and available nonlinear computer code (KZKTexas) are employed to investigate the reflector geometry that gives the highest stress wave excitation in solids. An acoustical muffler that works with the focused spark source is proposed to decrease the spark-induced noise level. The effect of source receiver spacing on received IE signals is studied. Simulated wavefield demonstrates that the mode shape of IE surface displacement distribution along the radial direction matches the Bessel function of the first kind (J0). Numerical 3D simulation results show the relation between focused IE signals and source receiver spacings, and indicate the spacing should be minimized to obtain better focused IE signal strength. Air-coupled IE test using through transmission setup is also investigated. / text
104

Assessment of hip fracture risk using cross-section strain energy determined from QCT-based finite element model

Kheirollahi Nataj Bisheh, Hossein 12 September 2015 (has links)
Accurate assessment of hip fracture risk is very important to prevent hip fracture and to monitor the effect of a treatment. A subject-specific QCT-based finite element model was constructed to assess hip fracture risk at the critical locations of femur during the single-leg stance and the sideways fall. The aim of this study was to improve the prediction of hip fracture risk by introducing a more proper failure criterion to more accurately describe bone failure mechanism. Hip fracture risk index was defined using the strain energy criterion, which is able to integrally consider information such as stresses, strains and material properties in bone failure. It was found that the femoral neck and the intertrochanteric region have higher fracture risk than other part of the femur, probably owing to the larger content of cancellous bone in these regions. The study results also suggested that women are more prone to hip fracture than men. The effects of different parameters such as age, body height, weight, and BMI on hip fracture risk were also investigated in this study. The findings in this study have a good agreement with those clinical observations reported in the literature. The main contributions from this study include: (1) introducing an algorithm for hip fracture risk assessment at the critical locations of femur using the strain energy criterion and QCT-based finite element modeling, (2) theoretically more reasonable definition of hip fracture risk index based on the strain energy criterion, and (3) a semi-automatic finite element analysis and automatic calculation of hip fracture risk index at the critical locations of femur using in-house developed computer codes. The proposed hip fracture risk index based on the strain energy criterion will be a promising tool for more accurate assessment of hip fracture risk. However, experimental validation should be conducted before its clinical applications. / October 2015
105

MECHANICAL CHARACTERIZATION OF METALLIC NANOWIRES BY USING A CUSTOMIZED ATOMIC MICROSCOPE

Celik, Emrah January 2010 (has links)
A new experimental method to characterize the mechanical properties of metallic nanowires is introduced. An accurate and fast mechanical characterization of nanowires requires simultaneous imaging and testing of nanowires. However, there exists no practical experimental procedure in the literature that provides a quantitative mechanical analysis and imaging of the nanowire specimens during mechanical testing. In this study, a customized atomic force microscope (AFM) is placed inside a scanning electron microscope (SEM) in order to locate the position of the nanowires. The tip of the atomic force microscope cantilever is utilized to bend and break the nanowires. The nanowires are prepared by electroplating of nickel ions into the nanoscale pores of the alumina membranes. Force versus bending displacement responses of these nanowires are measured experimentally and then compared against those of the finite element analysis and peridynamic simulations to extract their mechanical properties through an inverse approach.The average elastic modulus of nickel nanowires, which are extracted using finite element analysis and peridynamic simulations, varies between 220 GPa and 225 GPa. The elastic modulus of bulk nickel published in the literature is comparable to that of nickel nanowires. This observation agrees well with the previous findings on nanowires stating that the elastic modulus of nanowires with diameters over 100nm is similar to that of bulk counterparts. The average yield stress of nickel nanowires, which are extracted using finite element analysis and peridynamic simulations, is found to be between 3.6 GPa to 4.1 GPa. The average value of yield stress of nickel nanowires with 250nm diameter is significantly higher than that of bulk nickel. Higher yield stress of nickel nanowires observed in this study can be explained by the lower defect density of nickel nanowires when compared to their bulk counterparts.Deviation in the extracted mechanical properties is investigated by analyzing the major sources of uncertainty in the experimental procedure. The effects of the nanowire orientation, the loading position and the nanowire diameter on the mechanical test results are quantified using ANSYS simulations. Among all of these three sources of uncertainty investigated, the nanowire diameter has been found to have the most significant effect on the extracted mechanical properties.
106

Effect of Welding Residual Stress and Distortion on Ship Hull Structural Performance

Gannon, Liam 25 March 2011 (has links)
The finite element method is used to investigate the effects of welding-induced residual stress and distortion on the strength and behaviour of ship hull structures. A finite element welding simulation consisting of sequentially coupled transient thermal and nonlinear structural analyses is used to predict the three-dimensional residual stress and distortion fields in welded stiffened plates. Three types of stiffener commonly used in commercial and naval applications are considered. The welding simulation is followed by a 'shakedown' analysis to study the possibility of residual stress relief caused by cyclic loads. The strength and behaviour of stiffened plates under axial load is characterized by normalized plots of average axial stress versus axial strain, commonly referred to as load-shortening curves. These curves are used to evaluate the effects of welding-induced residual stress and distortion on stiffened plate behaviour with and without considering stress relief by shakedown. Load-shortening curves generated by finite element analysis are also compared with load-shortening curves produced using analytical methods including those prescribed in ship structural design standards published by the International Association of Classification Societies (IACS). To conclude, a hull girder ultimate strength analysis is carried out using Smith's method with load-shortening curves generated by several different methods. Results indicate that welding-induced residual stress and distortion decrease the ultimate strength of flat-bar, angle, and tee-stiffened plates investigated in this study by as much as 17%, 15% and 13%, respectively. Stiffened plate ultimate strength values calculated using IACS common structural rules agreed reasonably well with results from numerical models in most cases. There was however, a significant discrepancy between the numerical load-shortening curves and the IACS curves in the post-ultimate regime, where the IACS curves overestimated the post-ultimate strength of stiffened plates by as much as 30%. To investigate stress relief by shakedown, axial stresses of 25% and 50% of the yield stress were applied and residual stresses were reduced by approximately 20% and 40%, respectively. In some cases, these reductions in residual stress led to increases in stiffened plate ultimate strength as high as 7%. Analysis of a box girder using load-shortening curves from a finite element model including residual stresses and distortions predicted by welding simulation predicted a bending moment capacity within 2.7% of the experimentally measured value. Using load-shortening curves from the IACS common structural rules, the ultimate strength was overestimated by 17%. / Thesis .pdf/A
107

Two- and Three-Dimensional Microstructural Modeling of Asphalt Particulate Composite Materials using a Unified Viscoelastic-Viscoplastic-Viscodamage Constitutive Model

You, Tae-Sun 16 December 2013 (has links)
The main objective of this study is to develop and validate a framework for microstructural modeling of asphalt composite materials using a coupled thermo-viscoelastic, thermo-viscoplastic, and thermo-viscodamage constitutive model. In addition, the dissertation presents methods that can be used to capture and represent the two-dimensional (2D) and three-dimensional (3D) microstructure of asphalt concrete. The 2D representative volume elements (RVEs) of asphalt concrete were generated based on planar X-ray Computed Tomography (CT) images. The 2D RVE consists of three phases: aggregate, matrix, and interfacial transmission zone (ITZ). The 3D microstructures of stone matrix asphalt (SMA) and dense-graded asphalt (DGA) concrete were reconstructed from slices of 2D X-ray CT images; each image consists of the matrix and aggregate phases. The matrix and ITZ were considered thermo-viscoelastic, thermo-viscoplastic, and thermo-viscodamaged materials, while the aggregate is considered to be a linear, isotropic elastic material. The 2D RVEs were used to study the effects of variation in aggregate shape, distribution, volume fraction, ITZ strength, strain rate, and temperature on the degradation and micro-damage patterns in asphalt concrete. Moreover, the effects of loading rate, temperature, and loading type on the thermo-mechanical response of the 2D and 3D microstructures of asphalt concrete were investigated. Finally, the model parameters for Fine Aggregate Mixture (FAM) and full asphalt mixture were determined based on the analysis of repeated creep recovery tests and constant strain rate tests. These material parameters in the model were used to simulate the response of FAM and full asphalt mixture, and the results were compared with the responses of the corresponding experimental tests. The microstructural modeling presented in this dissertation provides the ability to link the microstructure properties with the macroscopic response. This modeling combines nonlinear constitutive model, finite element analysis, and the unique capabilities of X-ray CT in capturing the material microstructure. The modeling results can be used to provide guidelines for designing microstructures of asphalt concrete that can achieve the desired macroscopic behavior. Additionally, it can be helpful to perform 'virtual testing' of asphalt concrete, saving numerous resources used in conducting real experimental tests.
108

EFFECTS OF REINFORCEMENT AND SOIL VISCOSITY ON THE BEHAVIOUR OF EMBANKMENTS OVER SOFT SOIL

TAECHAKUMTHORN, CHALERMPOL 25 January 2011 (has links)
A verified elasto-viscoplastic finite element model is used to develop a better understanding of the performance of embankments with geosynthetic reinforcement constructed over rate-sensitive soil. The interaction between reinforcement and prefabricated vertical drains (PVDs) and their effects on time-dependent behaviour of embankments are examined. For rate-sensitive soils, the generation of creep-induced pore pressures following the end of construction is evident along the potential slip surface. As a result, the minimum factor of safety with respect to embankment stability occurs after the end of construction. The combined use of reinforcement and PVDs are shown to provide an effective means of minimizing creep-induced excess pore pressure, increasing overall stability, and decreasing deformation of the embankments. The combined effects of the viscoelastic properties of geosynthetic reinforcement (polyester, polypropylene and polyethylene) and the rate-sensitive nature of foundation soils on the performance of embankments are examined. The effect of various factors, including reinforcement type (i.e., stiffness and viscosity), soil viscosity, construction rate and allowable long-term reinforcement strain, on the time-dependent behaviour of embankments are considered. The long-term performance of reinforced embankments is investigated for different maximum allowable long-term reinforcement strains. From a series of finite element analyses, the ideal allowable reinforcement strains to minimize embankment deformation while providing optimum long-term service height of the embankment, considering the effect of soil and reinforcement viscosity, are proposed for soils similar to those examined in this study. The currently proposed design methods for embankments with creep-susceptible reinforcement over rate-sensitive soils appear to be overly conservative. This study proposes a refined approach for establishing the allowable long-term reinforcement strains that are expected to provide adequate performance while reducing the level of conservativeness of reinforced embankment design. Finally, a previously developed elasto-viscoplastic constitutive model is modified to incorporate the effect of soil structure using a state-dependent fluidity parameter and damage law. The model was evaluated against data from a well-documented case study of a reinforced test embankment constructed on a sensitive Champlain clay deposit in Saint Alban, Quebec. The benefit of basal reinforcement and the effect of reinforcement viscosity are then discussed for these types of soil deposits. / Thesis (Ph.D, Civil Engineering) -- Queen's University, 2011-01-21 22:26:40.133
109

THREE-DIMENSIONAL NONLINEAR ANALYSIS OF DEEP-CORRUGATED STEEL CULVERTS

ELSHIMI, Tamer Mohamed 26 April 2011 (has links)
Deep-corrugated steel culverts (with a corrugation wavelength of 400mm and amplitude of 150mm) can be used as an effective alternative for short-span bridges. Current design methods are typically based on two-dimensional finite element analysis. This thesis reports results from three-dimensional finite element analysis, with explicit modelling of the geometry of the corrugated plates (called corrugated analyses) and employing the orthotropic shell theory (called orthotropic analyses), for a specific box culvert having a 10 m span and 2.4 m rise. The results were compared to previously reported experimental data where a specific large span box culvert was tested under controlled laboratory conditions. The behaviour of the box culvert under small vertical displacement without any soil support was modelled to isolate the structure response. The box culvert was also modelled when subject to fully loaded dump truck, and when loaded using a tandem axle frame to service and ultimate loads. Both corrugated and orthotropic analyses successfully captured the response of the box culvert when backfilled and loaded using dump truck and axle frame loading. It was found that the orthotropic model overestimated the culvert stiffness at the ultimate limit state, but provided effective estimates of response up to the factored design loads. The corrugated model with geometric nonlinearity was required to capture the real behaviour of the corrugated plates up to the ultimate limit state. New insight into the failure mechanisms of the box culvert were provided by the corrugated model analysis. A parametric study was then performed for 86 different long-span box and arch culverts, examining live load spreading in the axial direction, number of loaded lanes, design truck position, culvert geometry, plate thickness, and the existence of pavement. The results were then compared to the moment and thrust equations in the 2006 Canadian Highway Bridge Design Code (CHBDC) to check the performance of the current design equations. CHBDC equations overestimated the earth and live load bending moments, and did not give the correct trend for different spans. CHBDC thrust equations were found to underestimate the earth and live load thrust values for arch culverts. / Thesis (Ph.D, Civil Engineering) -- Queen's University, 2011-04-26 15:33:45.103
110

Geometric Variations in Load-Bearing Joints

Islam, Kamrul Unknown Date
No description available.

Page generated in 0.0423 seconds