Spelling suggestions: "subject:"apetrecho"" "subject:"acecho""
1 |
Analysis of air-coupled system for exciting and sensing stress waves in concreteTsai, Yi-Te 01 July 2014 (has links)
Nondestructive testing (NDT) plays a more important role today in evaluating structural integrity of civil infrastructure. Impact-echo method (IE) is an effective stress wave based NDT method for locating defects in concrete structures. However, the contact requirement between sensor and concrete surface significantly limits the test speed and wide application of this method to large-scale structures such as bridges. Recent studies show the feasibility of air-coupled sensing, which eliminates the contact requirement and thus accelerates IE test. To further improve the test speed, a fully non-contact IE test using air-coupled sensing and excitation is investigated in this dissertation. This dissertation provides the theoretical basis required for developing an effective air-coupled IE method. For air-coupled sensing, 2D numerical simulations are first conducted to study the wave propagation in the air-solid system during IE tests. Visualized wavefield indicates that parabolic reflectors can effectively enhance the IE signal strength by focusing airborne IE waves to an air-coupled sensor. To maximize signal amplification, an analytical solution for the focused axial pressure response of a parabolic reflector with incident plane waves is derived. This solution is used to determine the reflector geometry that gives the highest focusing gain. For air-coupled excitation, a focused spark source with an ellipsoidal reflector is employed to excite stress waves in concrete. Numerical simulations and available nonlinear computer code (KZKTexas) are employed to investigate the reflector geometry that gives the highest stress wave excitation in solids. An acoustical muffler that works with the focused spark source is proposed to decrease the spark-induced noise level. The effect of source receiver spacing on received IE signals is studied. Simulated wavefield demonstrates that the mode shape of IE surface displacement distribution along the radial direction matches the Bessel function of the first kind (J0). Numerical 3D simulation results show the relation between focused IE signals and source receiver spacings, and indicate the spacing should be minimized to obtain better focused IE signal strength. Air-coupled IE test using through transmission setup is also investigated. / text
|
2 |
Development of a non-contact ndt system for stress wave sensing and excitationDai, Xiaowei 15 January 2015 (has links)
Non-destructive testing (NDT) plays an important role today in condition assessment of civil infrastructure. Among these NDT methods, the Impact-Echo (IE) method is widely used to determine the thickness of a plate structure and locate delaminations in concrete. The conventional IE test uses a contact impact source and a contact sensor, which limits the scanning speed. Recent studies show the feasibility of applying the air-coupled sensing technology to the IE test. With the contact requirement eliminated, a fully air-coupled NDT system can be realized to achieve rapid scanning on large scale structures. In this dissertation, the air-coupled IE test is first simulated using 2D finite element models. The numerical simulation results are validated by experimental measurements. It is shown that the airborne IE mode is a quasi-plane wave in air. A parabolic reflector is proposed to focus the airborne IE wave and amplify the air-coupled IE test signals. The focusing effect is validated by experimental results. By applying a parabolic reflector to the air-coupled sensor, it is found that large sensor lift-off height and source-receiver spacing can be used in the air-coupled IE test. The geometry of the parabolic reflector and source-receiver spacing are optimized using numerical simulations. A focused spark source is proposed as a non-contact source for the fully air-coupled test system. The spark source is first calibrated in an anechoic chamber. The feasibility of using the focused spark source for stress wave excitation is validated by experiments. A fully air-coupled testing system is realized by combining the air-coupled sensor and the air-coupled source. Experimental studies show that this system can measure surface wave and the IE mode. The fully air-coupled system is tested using a conventional IE test setup and a through transmission test setup. An acoustic muffler is introduced to suppress the acoustic noise from the spark source. Several advanced signal processing techniques to reduce the acoustic noises are also investigated. The air-coupled sensor has been adopted on a crawler NDT system for concrete inspection in a noisy field environment. / text
|
3 |
Non-Destructive Condition Assessment of Concrete Slabs with Artificial Defects Using Wireless Impact EchoLacroix, Francis 16 December 2020 (has links)
This thesis presents the development and validation of a new wireless Impact Echo (IE) system for condition assessment of reinforced concrete slabs. The new IE prototype was compared with other commercially available non-destructive testing (NDT) devices used for similar purposes, namely Ground-Penetrating Radar (GPR) and Ultrasonic Pulse Echo (UPE). Monitoring and structural inspections are critical to effective management of civil infrastructure and NDTs can enhance the quality of condition assessments by providing objective visualizations of the interior of a structural element.
The IE method, first developed in the 1980s, has seen few advancements in the last 20 years. The method has been standardized and used on site, but the underlying technology has become outdated. The data obtained from the transducer is difficult to interpret and requires a computer to post-process it before being usable, thus limiting the direct feedback of the method when conducting tests on-site. Because of those limitations and the test being relatively more time consuming than other alternatives, the method is lacking in usability. A new prototype IE device was designed and built by the project industry partner, FPrimeC Solutions. The methodology followed the traditional approach, but it was designed to work with today’s technology. The device is operated wirelessly via a Bluetooth connection, uses smaller-sized electronic components, and connects with a user-friendly interface on a small tablet to set-up the tests and compute the results immediately. The first part of the project focused on product development by testing iterations of the prototype and providing user feedback to improve the device and accompanying software.
The second part of the project aimed to validate the new technology using a set of three large reinforced concrete slabs containing artificial defects. The studied points of interest were sound concrete, effect of boundaries and steel reinforcements, vertical cracks, presence of a hollow conduit, artificial voids and delamination. The IE results were also compared with those from commercial GPR and UPE devices. GPR was found to be the quickest method by far, although the results gathered seemed to be limited by the presence of steel reinforcement and also failed to locate certain defects. UPE was a bit slower than GPR, but was generally able to locate more accurately the artificial flaws created in the test specimens. The results showed poor definition of the flaws making it difficult sometimes to properly locate them. The UPE results also seemed to be negatively affected by the presence of reinforcement which were causing frequent abnormal values. Lastly, the IE method was used. This method was greatly improved during the first phase, but it is still a time-consuming method. The value of the data, however, has great potential when compared to the other options. It accurately located most of the flaws generated and was practically unaffected by the presence of steel reinforcing bars. Also, with further analysis of the data, it was possible to determine the depth of some of the flaws accurately.
Due to the time-consuming testing phase and the longer analysis of the data required to obtain the higher quality of results, this study suggests that IE is not likely to be the best choice for a general inspection of a large area (depending on the nature of the information needed). Rather, it is suggested to first conduct a general review of the structure using a quicker method like GPR to locate the problematic areas. After that, refining the grid at key locations to test with IE should provide the best quality of data in a reasonable amount of time.
|
4 |
High-Speed Apparatus and Signal Processing for Accoustic Delamination Detection on Concrete Bridge DecksHendricks, Lorin James 10 April 2020 (has links)
Maintenance and repair of deteriorating civil infrastructure are global problems requiring significant attention and resources. Accurate measurements of civil infrastructure enable lower repair and rehabilitation costs if mitigation techniques are deployed at earlier stages of deterioration. This research describes an infrastructure inspection solution to scan concrete bridge decks for internal cracking at high speeds. Internal cracking within bridge decks, known as delamination, is a particularly difficult defect to identify because it is often not detectable through visual inspection. State-of-the practice testing approaches involve the use of slow and subjective manual sounding techniques and costly lane closures. The need for an improved testing approach has led to decades of research investigating the use of acoustic impact-echo testing to detect bridge deck delaminations. The research presented here consists of a study of the acoustic radiation patterns of delamination defects when they are impacted. Acoustic data were collected on an in-service bridge deck and compared to acoustic data collected on defects in decommissioned bridge deck slabs and on simulated delaminations. This study examined cases of ideal and non-ideal delaminations on the in-service bridge deck and identified characteristics of non-ideal delaminations. An apparatus consisting of a high-speed impact-echo platform and recording suite was designed and constructed. Using this towed apparatus, an order-of-magnitude increase in scanning speed was obtained over other reported methods. Significant design effort was employed to achieve synchronization between different sensing devices using networked computer systems. Analysis was also developed to process and automatically classify acoustic responses to determine the presence and location of delaminations. Demonstrated performance against ground truth data obtained on an in-service bridge deck includes an achievement of approximately 90% probability of detection with only a 2% false alarm rate within 0.30 m. Because of the need to classify acoustic data when ground truth may not be obtainable, a new outlier rejection algorithm, which robustly removes outliers for classification on both simulated and field test data, was also developed. These contributions advance state-of-the-art bridge inspection and also lay the groundwork for additional studies of bridge deck deterioration processes. The framework also demonstrates how a tedious, subjective, and manual inspection process can be automated using advanced excitation tools, signal processing, and machine learning.
|
5 |
Automated Impact Response Sounding for Accelerated Concrete Bridge Deck InspectionLarsen, Jacob Lynn 01 July 2018 (has links)
Infrastructure deterioration is an international problem requiring significant attention. One particular manifestation of this deterioration is the occurrence of sub-surface cracking (delaminations) in reinforced concrete bridge decks. Of many techniques available for inspection, air-coupled impact-echo testing, or sounding, is a non-destructive evaluation technique to determine the presence and location of delaminations based upon the acoustic response of a bridge deck when struck by an impactor. In this work, two automated air-coupled impact echo sounding devices were designed and constructed. Each device included fast and repeatable impactors, moving platforms for traveling across a bridge deck, microphones for air-coupled sensing, distance measurement instruments for keeping track of impact locations, and signal processing modules. First, a single-channel automated sounding device was constructed, followed by a multi channel system that was designed and built from the findings of the single-channel apparatus. The multi channel device performed a delamination inspection in the same manner as the single-channel device but could complete an inspection of an entire traffic lane in one pass. Each device was tested on at least one concrete bridge deck and the delamination maps produced by the devices were compared with maps generated from a traditional chain-drag sounding inspection. The comparison between the two inspection approaches yielded high correlations for bridge deck delamination percentages. Testing with the two devices was more than seven and thirty times faster, respectively, than typical manual sounding procedures. This work demonstrates a technological advance in which sounding can be performed in a manner that makes complete bridge deck scanning for delaminations rapid, safe, and practical.
|
6 |
Delamination Detection in Concrete Using Disposable Impactors for ExcitationPatil, Anjali Narendra 14 December 2013 (has links)
Delaminations in concrete bridge decks result primarily from corrosion of the reinforcing bars (or rebar). This corrosion leads to volumetric expansion of the rebar. When the rebar expands, concrete cracks, and there is a localized separation of the concrete cover from the underlying concrete. Impact-echo testing is an effective technique to map delaminations on concrete bridge decks. However, mapping speed is limited by necessary retrieval of the impactor for traditional tests. To achieve higher scanning speeds, it is advantageous to use both a non-contact measurement (air-coupled impact-echo) and disposable-impactor excitation. Disposable impactors have the potential advantage of achieving greater deck scanning speeds because they do not need to be retrieved, and they can also be used with air-coupled measurement systems. This thesis reports impact excitation of concrete using disposable impactors such as water droplets and ice balls. The impact characteristics of these impactors are compared with those of steel balls and chain links. Comparing the acoustic recordings on intact and delaminated concrete surface shows that water droplets and ice balls are able to excite flexural resonant modes associated with delamination defects. The use of water droplets and ice balls for shallow delamination detection in concrete is thus demonstrated.
|
7 |
Determining The Thickness Of Concrete Pavements Using The Impact-echo Test MethodAktas, Can Baran 01 June 2007 (has links) (PDF)
Traditionally, destructive methods such as coring are used for the condition assessment of an existing concrete structure. Although these methods may yield valid data about the corresponding concrete section, they are quite expensive and time consuming. More important than these, destructive methods damage the structure being investigated and these points usually become focal points for further deterioration. For all these reasons, only a few samples can be collected from a structure and this results in a poor representation of the complete structure.
The impact-echo technique is one of the most suitable non-destructive test methods that may be used on concrete for thickness determination or for investigation of possible delaminations in the internal parts of a concrete structure without damaging the surface. It has been observed that reliable results can be obtained quickly. Unlike pulse-echo tests which are commonly used on steel, testing a heterogeneous material like concrete requires the use of low frequency sound waves as in impact-echo, in order to mitigate the effects of paste-aggregate interfaces or small air voids.
This method may be used to locate internal cracks or large air voids existing in concrete. It is known that impact-echo has been used successfully on structures with varying geometries and various purposes such as evaluation of concrete pavements, retaining walls and other reinforced concrete sections. Besides the investigation of the internal state, it may also be used when the other side of the section cannot be reached, as in the case of concrete pavements, in order to find the thickness of the section. This is especially important for quality control and for cost calculations.
Research conducted in this thesis study was concentrated on the thickness determination of existing concrete pavement sections, produced in the laboratory with dimensions of 1500 x 2000 mm four and varying thicknesses, and the accuracy associated with these results. In order to correctly determine the sensitivity, several other parameters were investigated and optimum ranges were determined for these to be used while on a field test. Among these factors were the steel impactor size, accuracy related to the data acquisition, distance between the impact point and the transducer and the location of the test point.
Finally, the accuracy of the impact-echo method for concrete pavement applications was studied. By observing the large number of data points collected, it was found out that an average error of 1.5% exists for a single impact-echo reading regardless of section thickness, but this value reduces to 0.6% when the average of all test results is used while determining pavement thickness. Results of this study show that the impact-echo technique is reliable and may be used with success for the thickness determination of concrete pavements and for locating internal voids.
|
8 |
Využití akustických metod pro posouzení vlivu složení cementových kompozitů na průběh degradace vyvolané zvýšenou teplotou / Use of acoustic methods for assessing the influence of the composition of cement composites on the course of degradation caused by high temperatureDvořák, Richard Unknown Date (has links)
The aim of this work is to optimize the acoustic nondestructive method (NDT) Impact-Echo (IE) as a complementary diagnostic tool for the assessment of concrete structures exposed to high temperatures. Commonly used diagnostic procedures for concrete structures affected by fire are most often limited to in-situ core drilling and subsequent testing of the drilled holes by destructive testing. The Impact-Echo method allows non-destructive testing of variously degraded test specimens and concrete structures, but its use for the assessment of temperature-degraded cementitious composites is hardly ever used in practice. Many studies suggest that Impact-Echo is one of the most suitable non-destructive methods for assessing the rate of degradation by elevated temperature. The dissertation work consists of three main stages, where the first stage is devoted to the production of test specimens of different mixtures and their subsequent degradation by elevated temperature and testing by the IE method and by reference destructive and non-destructive methods. The second stage consists of manufacturing a reinforced concrete element with built-in thermocouples and its subsequent inhomogeneous degradation by a local source of elevated temperature. The controlled degraded element thus prepared contains all grades of thermally degraded concrete tested in the first stage. Subsequent testing consists of verification of standard procedures in the field of acoustic NDT with simultaneous use of experimental modal analysis. In the third stage, the objective is to interpret the measured data from both previous parts, to verify whether within the closed element temperature-degraded areas can be distinguished from one another, or the degree of thermal degradation of concrete. Based on these results, the optimal testing procedure was determined and the basic assumptions for the creation of degrees of damage of the concrete by increased temperature were determined.
|
9 |
Bond Performance between Corroded Steel and Recycled Aggregate Concrete Incorporating Nano SilicaAlhawat, Musab M. January 2020 (has links)
The current research project mainly aims to investigate the corrosion resistance and bond
performance of steel reinforced recycled aggregate concrete incorporating nano-silica under
both normal and corrosive environmental conditions. The experimental part includes testing
of 180 pull-out specimens prepared from 12 different mixtures. The main parameters studied
were the amount of recycled aggregate (RCA) (i.e. 0%, 25%, 50% and 100%), nano silica
(1.5% and 3%), steel embedment length as well as steel bar diameter (12 and 20mm).
Different levels of corrosion were electrochemically induced by applying impressed voltage
technique for 2, 5, 10 and 15 days. The experimental observations mainly focused on the
corrosion level in addition to the ultimate bond, failure modes and slips occurred.
Experimental results showed that the bond performance between un-corroded steel and
recycled aggregate concrete slightly reduced, while a significant degradation was observed
after being exposed to corrosive conditions, in comparison to normal concrete. On the other
hand, the use of nano silica (NS) showed a reasonable bond enhancement with both normal
and RCA concretes under normal conditions. However, much better influence in terms of bond
and corrosion resistance was observed under advancing levels of corrosion exposure,
reflecting the improvement in corrosion resistance. Therefore, NS was superbly effective in
recovering the poor performance in bond for RCA concretes. More efficiency was reported
with RCA concretes compared to the conventional concrete. The bond resistance slightly with
a small amount of corrosion (almost 2% weight loss), then a significant bond degradation
occurs with further corrosion.
The influence of specific surface area and amount of nano silica on the performance of concrete
with different water/binder (w/b) ratios has been also studied, using 63 different mixtures produced
with three different types of colloidal NS having various surface areas and particle sizes. The
results showed that the performance of concrete is heavily influenced by changing the surface area
of nano silica. Amongst the three used types of nano silica, NS with SSA of 250 m2
/g achieved the highest enhancement rate in terms of compressive strength, water absorption and
microstructure analysis, followed by NS with SSA of 500 m2/g, whilst NS with SSA of 51.4
m2
/g was less advantageous for all mixtures. The optimum nano silica ratio in concrete is
affected by its particle size as well as water to binder ratio.
The feasibility of the impact-echo method for identifying the corrosion was evaluated and
compared to the corrosion obtained by mass loss method. The results showed that the impact echo testing can be effectively used to qualitatively detect the damage caused by corrosion in
reinforced concrete structures. A significant difference in the dominant frequencies response
was observed after exposure to the high and moderate levels of corrosion, whilst no clear
trend was observed at the initial stage of corrosion.
Artificial neural network models were also developed to predict bond strength for corroded/uncorroded steel bars in concrete using the main influencing parameters (i.e., concrete strength,
concrete cover, bar diameter, embedment length and corrosion rate). The developed models
were able to predict the bond strength with a high level of accuracy, which was confirmed by
conducting a parametric study. / Higher Education Institute of the Libyan Government
|
10 |
Bond Performance between Corroded Steel and Recycled Aggregate Concrete Incorporating Nano SilicaAlhawat, Musab M. January 2020 (has links)
The current research project mainly aims to investigate the corrosion resistance and bond
performance of steel reinforced recycled aggregate concrete incorporating nano-silica under
both normal and corrosive environmental conditions. The experimental part includes testing
of 180 pull-out specimens prepared from 12 different mixtures. The main parameters studied
were the amount of recycled aggregate (RCA) (i.e. 0%, 25%, 50% and 100%), nano silica
(1.5% and 3%), steel embedment length as well as steel bar diameter (12 and 20mm).
Different levels of corrosion were electrochemically induced by applying impressed voltage
technique for 2, 5, 10 and 15 days. The experimental observations mainly focused on the
corrosion level in addition to the ultimate bond, failure modes and slips occurred.
Experimental results showed that the bond performance between un-corroded steel and
recycled aggregate concrete slightly reduced, while a significant degradation was observed
after being exposed to corrosive conditions, in comparison to normal concrete. On the other
hand, the use of nano silica (NS) showed a reasonable bond enhancement with both normal
and RCA concretes under normal conditions. However, much better influence in terms of bond
and corrosion resistance was observed under advancing levels of corrosion exposure,
reflecting the improvement in corrosion resistance. Therefore, NS was superbly effective in
recovering the poor performance in bond for RCA concretes. More efficiency was reported
with RCA concretes compared to the conventional concrete. The bond resistance slightly with
a small amount of corrosion (almost 2% weight loss), then a significant bond degradation
occurs with further corrosion.
The influence of specific surface area and amount of nano silica on the performance of concrete
with different water/binder (w/b) ratios has been also studied, using 63 different mixtures produced
with three different types of colloidal NS having various surface areas and particle sizes. The
results showed that the performance of concrete is heavily influenced by changing the surface area
of nano silica. Amongst the three used types of nano silica, NS with SSA of 250 m2
/g achieved the highest enhancement rate in terms of compressive strength, water absorption and
microstructure analysis, followed by NS with SSA of 500 m2/g, whilst NS with SSA of 51.4
m2
/g was less advantageous for all mixtures. The optimum nano silica ratio in concrete is
affected by its particle size as well as water to binder ratio.
The feasibility of the impact-echo method for identifying the corrosion was evaluated and
compared to the corrosion obtained by mass loss method. The results showed that the impact-echo testing can be effectively used to qualitatively detect the damage caused by corrosion in
reinforced concrete structures. A significant difference in the dominant frequencies response
was observed after exposure to the high and moderate levels of corrosion, whilst no clear
trend was observed at the initial stage of corrosion.
Artificial neural network models were also developed to predict bond strength for corroded/uncorroded steel bars in concrete using the main influencing parameters (i.e., concrete strength, concrete cover, bar diameter, embedment length and corrosion rate). The developed models
were able to predict the bond strength with a high level of accuracy, which was confirmed by
conducting a parametric study. / Higher Education Institute in the Libyan Government
MONE BROS Company in Leeds (UK) for providing recycled aggregates
BASF and Akzonobel Companies for providing nano silica NS,
Hanson Ltd, UK, for suppling cement
|
Page generated in 0.0381 seconds