• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 37
  • 7
  • 5
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 119
  • 119
  • 47
  • 32
  • 20
  • 14
  • 12
  • 11
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Visible Light-Triggered Carbon Monoxide-Releasing Molecules

Popova, Marina 01 May 2019 (has links)
Carbon monoxide (CO) is now well established as one of the signaling molecules in higher organisms, including humans. Due to its physiological roles, CO is now accepted as a potential therapeutic agent. The use of CO gas has been studied in multiple clinical trials. Vasodilation, anti-inflammatory, anti-apoptotic, anti-proliferative and cytoprotective effects are just a few of the pharmacological actions attributed to CO gas in various models of diseases. Use of inhaled CO gas as a therapeutic has many limitations which necessitate the development of a new approach for CO delivery. In order to handle CO safely, compounds that release CO (CO-releasing molecules, CORMs) have been developed. CORMs that release CO only when triggered, and with the ability to target certain tissue sites, are of particular interest. Our lab is developing molecules that release CO only when illuminated with visible light (photoCORMs). These photoCORMs are based on a motif found in naturally-occurring flavonols, which are chemical compounds found in wide variety of foods including fruits, vegetables, tea and dark chocolate. The research presented in this dissertation outlines the results of studies on extended flavonols as CO release agents. The specific studies described herein focus on understanding visible light-induced CO-releasing flavonols in terms of their: a) structure/reactivity relationships, especially in biological environments; b) interactions with metal ions and proteins; c) reaction pathway of CO release; and d) their properties when combined with a CO-sensing motif.
52

The preparation and evaluation of N-acetylneuraminic acid derivatives as probes of sialic acid-recognizing proteins

Ciccotosto, Silvana January 2004 (has links)
Abstract not available
53

Development of Dynamic DNA Probes for High-Content in situ Proteomic Analyses

Schweller, Ryan 06 September 2012 (has links)
Dynamic DNA complexes are able to undergo multiple hybridization and dissociation events through a process called strand displacement. This unique property has facilitated the creation of programmable molecular detection systems and chemical logic gates encoded by nucleotide sequence. This work examines whether the ability to selective exchange oligonucleotides among different thermodynamically-stable DNA complexes can be harnessed to create a new class of imaging probes that permit fluorescent reporters to be sequentially activated (“turned on”) and erased (“turned off”). Here, dynamic DNA complexes detect a specific DNA-conjugated antibody and undergo strand displacement to liberate a quencher strand and activate a fluorescent reporter. Subsequently, incubation with an erasing complex allows the fluorophore to be stripped from the target strand, quenched, and washed away. This simple capability therefore allows the same fluorescent dyes to be used multiple times to detect different markers within the same sample via sequential rounds of fluorescence imaging. We evaluated and optimized several DNA complex designs to function efficiently for in situ molecular analyses. We also applied our DNA probes to immunofluorescence imaging using DNA-conjugated antibodies and demonstrated the ability to at least double the number of detectable markers on a single sample. Finally, the probe complexes were reconfigured to act as AND-gates for the detection of co-localized proteins. Given the ability to visualize large numbers of cellular markers using dynamic DNA probe complexes, high-content proteomic analyses can be performed on a single sample, enhancing the power of fluorescence imaging techniques. Furthermore, dynamic DNA complexes offer new avenues to incorporate DNA-based computations and logic for in situ molecular imaging and analyses.
54

Design, synthesis, and evaluation of fluorescent sensors for intracellular imaging of monovalent copper

Yang, Liuchun 21 July 2005 (has links)
The main theme of this thesis is to develop a fluorescent probe for imaging the subcellular distribution of kinetically labile copper pools that might play a critical role in copper homeostasis. Various copper-selective sensors were designed by combining 1,3,5-triaryl-2-pyrazoline fluorophores with polythioethers as receptor moieties. A series of donor-substituted 1,3,5-triaryl-2-pyrazoline fluorophores were synthesized and characterized in terms of their photophysical and electrochemical properties. Interestingly, the aryl substituents attached to the 1- and 3-position of the pyrazoline ring influence the photophysical properties of the fluorophore in distinctly different ways. The excited-state equilibrium energy is primarily influenced by changes of the substituent in the 1-position, whereas the reduction potential of the fluorophore is determined by the 3-aryl group. Results from computational analyses agree well with the experimental data. A pyrazoline fluorophore library was synthesized, and their photophysical and electrochemical properties were studied. The compounds cover a broad range of excited state energies and reduction potentials, and allow for selective and differential tuning of these two parameters. A series of thiazacrownethers and tripodal aniline copper(I) receptors were synthesized and their copper binding stoichiometries, stability constants, and copper-self-exchange kinetics were investigated. The measured self-exchange activation parameters revealed for all studied ligands a negative activation entropy, suggesting a predominant associative exchange mechanism. With detailed knowledge of the fluorophore platform and copper receptors, sensor CTAP-1 was designed, synthesized and characterized. The probe shows a 4.6-fold emission enhancement and reaches a quantum yield of 14% upon saturation with Cu(I). The sensor exhibits excellent selectivity towards Cu(I) and is insensitive towards millimolar concentrations of Mg(II) or Ca(II). Mouse fibroblast cells (3T3) incubated with the sensor produced a copper-dependent perinuclear staining pattern, which colocalizes with the subcellular location of the mitochondria and the Golgi apparatus. The subcellular topography of copper was further determined by synchrotron-based x-ray fluorescence (SXRF) microscopy. Furthermore, microprobe x-ray absorption measurements at various subcellular locations showed a near-edge feature that is characteristic for low-coordinate monovalent copper. The data provide a coherent picture with evidence for a kinetically labile copper pool, which is predominantly localized in the mitochondria and the Golgi apparatus.
55

Novel Molecular Building Blocks Based On Bodipy Chromophore: Applications In Metallosupramolecular Polymers And Ion Sensing

Buyukcakir, Onur 01 September 2008 (has links) (PDF)
We have designed and synthesized boradiazaindacene (BODIPY) derivatives, appropriately functionalized for metal ion mediated supramolecular polymerization. Thus, ligands for 2- and 2,6-terpyridyl and bipyridyl functionalized BODIPY dyes were synthesized through Sonogashira couplings. These new fluorescent building blocks are responsive to metal ions in a stoichiometry dependent manner. Octahedral coordinating metal ions such as Zn(II), result in polymerization at a stoichiometry which corresponds to two terpyridyl ligands to one Zn(II) ion. However, at increased metal ion concentrations, the dynamic equilibria are re-established in such a way that, monomeric metal complex dominates. The position of equilibria can easily be monitored by 1H NMR and fluorescence spectroscopy. As expected, open shell Fe(II) ions while forming similar complex structures, quench the fluorescence emission of all four functionalized BODIPY ligands.
56

Cruciform pi-systems: novel two-dimensional cross-conjugated chromophores possessing spatially separated frontier molecular orbitals

Zucchero, Anthony Joseph 30 August 2010 (has links)
The design of chromophores targets materials with optoelectronic properties necessary for advanced applications. Organic materials possess properties which emerge from the collective impact of the constituent backbone and substituents as well as their connectivity (i.e. molecular architecture), necessitating the exploration of novel conjugated architectures. This thesis chronicles our examination of 1,4-distyryl-2,5-bis(arylethynyl)benzenes (cruciforms, XFs). Electronic substitution of this 'X-shaped' cross-conjugated scaffold tunes both the energy levels and the spatial distribution of the frontier molecular orbitals (FMOs) in XFs. The resulting fluorophores exhibit FMO separation, imbuing XFs with desirable properties for sensory applications. Using model analytes, we examine how the underlying FMO arrangement and the nature of analyte interaction elicit observable responses. These studies provide a foundation for future access of functional responsive ratiometric cores. This case study demonstrates the importance and unique potential of FMO-separated fluorophores.
57

Discovery and synthesis of bioactive natural product probes from marine systems

Stout, Elizabeth Paige 15 September 2010 (has links)
Flora and fauna from terrestrial and marine environments provide libraries of natural compounds for drug discovery. The last four decades have seen major advances in ocean exploration that have allowed chemists and biologists to explore previously inaccessible and rare marine organisms. The study of under-explored marine organisms can result in the discovery of structurally novel and unusual natural products with drug potential. Prior to 2005, no natural products had been reported from the Fijian red macroalgae Callophycus serratus or Neurymenia fraxinifolia. As a result of the work described in this thesis and others in the same research group, 33 unique brominated meroditerpenes have been isolated and elucidated alpha-pyrone natural products were discovered from N. fraxinifolia, enriching the natural product library for drug development. Several natural products isolated from C. serratus exhibited sub-micromolar inhibition against the human malaria parasite Plasmodium falciparum, including a drug-resistant strain. Derivatization of the natural product bromophycolide A into fluorescent probes allowed the determination of a non-enzymatic mechanism of action against the human malaria parasite P. falciparum. Through a combination of detailed SAR mapping, molecular fluorescent imaging of live cells, UV-vis spectroscopic analyses, and protein affinity techniques, the mechanism of action of bromophycolide A against P. falciparum was determined to involve inhibition of heme crystallization. These studies identify a new class of natural products that target heme detoxification in both drug-sensitive and drug-resistant P. falciparum and suggest an avenue to circumvent drug resistance.
58

Investigating the effect of membrane anchoring on photoinduced electron transfer pyrazoline based fluorescent probes

Hofmekler, Jonathan 18 November 2011 (has links)
Fluorescence microscopy is a powerful analytical tool for visualizing biological processes at the subcellular level. In this regard, 1,3,5-triarylpyrazoline based fluorescent probes which act as "turn-on" probes, have been extensively researched. These probes achieve their fluorescence "turn-on" response by inhibition of fluorescence quenching by acceptor-excited photoinduced electron transfer upon binding of an analyte. It has been recently shown that some fluorescent probes used in biological research form colloids composed of nanoparticles, due to their hydrophobic character. This hydrophobic character can also lead to partitioning of the probe into cellular membranes. Colloid formation and membrane partitioning may affect the probes' photophysical properties such as absorption and emission wavelength and quantum yields. Recently, a series of 1,3,5-triarylpyrazolines synthesized in our group by M. T. Morgan, showed no formation of aggregates in aqueous buffer. Surprisingly, these probes increased their fluorescence intensity in the presence of liposomes. The photoinduced electron transfer process is greatly affected by the polarity of the medium in which the probe is used. In this study, the effect of membrane proximity on the photoinduced electron transfer process for pyrazoline based "turn-on" probes has been investigated. A series of water soluble 1,3,5-triarylpyrazolines have been synthesized in which a N,N-dialkylaniline moiety acts as an electron donor and a proton acceptor and an alkylated sulfonamide moiety acts as a molecular anchor for interaction with neutral and anionic liposomes.
59

Fluorescence-based reporter substrate for monitoring RNA editing in Trypanosomatid pathogens

Moshiri, Houta. January 2008 (has links)
Mitochondrial gene expression in trypanosomatid pathogens requires extensive post transcriptional modification called RNA editing. This unique molecular mechanism, catalyzed by a multiprotein complex (the editosome), generates translatable transcripts for essential components of parasite respiratory complex. How editosome proteins are assembled and perform RNA editing is not fully understood. Moreover, previous studies have shown that editosome proteins are essential for parasite survival, which makes editosome as a suitable target for drug discovery. Currently, researchers use radio-labeled based assays to monitor RNA editing process. However, these assays are not suitable for high throughput screening of editosome inhibitors, have low detection limits, and cannot monitor RNA editing in real time. / Therefore, to develop a sensitive high throughput RNA editing assay, we have designed a sensitive hammerhead ribozyme-based fluorescence assay. Ribozyme structure was remodeled by adding or removing uridylate in its conserved catalytic core to make an inactive ribozyme. In the presence of the editosome, inactive ribozyme is edited to an active ribozyme. Consequently, hammerhead ribozyme activity can be measured by cleaving its fluorescently labeled substrate. We have shown that higher sensitivity is achieved using fluorescent based assay than conventional radio-labeled assay. Moreover, we can use this assay for rapid identification and characterization of the editosome inhibitors against RNA editing activities in trypanosomatids.
60

Quantitative imaging of tyrosine kinase-drug interactions in cells.

Chuntharpursat, Eulashini. January 2012 (has links)
Kinases play a crucial role in regulating cellular signaling cascades, making them therapeutic targets for several human diseases. In human cancers, mis-regulation and mutations of kinases such as EGFR (epidermal growth factor receptor) have been found to drive malignant transformation. Due to the conserved structural elements of protein kinases, the majority of kinase inhibitors available have a tendency to inhibit multiple targets. The biological impact of this promiscuity is insufficiently defined and the prevalence of cellular compensatory mechanisms additionally varies the clinical responses to drug treatment. In order to understand the relationship between selectivity and efficacy, prior to clinical trials, it is essential to characterize how inhibitors interact with the kinome within a cellular context. Monitoring inhibitor-target interactions generally involves in vitro assaying with purified proteins or protein domains, which compromises the native integrity of the kinases. Cellbased assays either gain outcomes from bulk populations that average out cell variance or phenotypic assays that lack molecular resolution. To obtain information on drug interactions on a single cell level, we have developed a method to measure the direct binding of kinase inhibitors to their targets in situ and in vivo. Kinase inhibitors are chemically tagged with fluorophores that serve as acceptors to genetically tagged donor fluorophores on the enzyme and the interaction is measured using FRET-FLIM. With epidermal growth factor receptor (EGFR) and irreversible EGFR inhibitors as the model system, this approach has been applied to image inhibitor-kinase interactions in live and fixed cells. Using this method, a small panel of tyrosine kinase targets, and labeled inhibitors, we were able to investigate the cross-specificity within the panel. Additionally it was found that the specificity of inhibitors for specific kinase conformations enables the distinction between EGFR in the active and inactive conformation by the inhibitor-probes. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2011.

Page generated in 0.0396 seconds