Spelling suggestions: "subject:"[een] FRACTURE PROPAGATION"" "subject:"[enn] FRACTURE PROPAGATION""
1 |
Thermo-Poroelastic Fracture Propagation Modeling with Displacement Discontinuity Boundary Element MethodChun, Kwang Hee 16 December 2013 (has links)
The effect of coupled thermo-poroelastic behavior on hydraulic fracture propagation is of much interest in geothermal- and petroleum-related geomechanics problems such as wellbore stability and hydraulic fracturing as pore pressure and temperature variations can significantly induce rock deformation, fracture initiation, and propagation. In this dissertation, a two-dimensional (2D) boundary element method (BEM) was developed to simulate the fully coupled thermo-poroelastic fracture propagation process. The influence of pore pressure and temperature changes on the fracture propagation length and path, as well as on stress and pore pressure distribution near wellbores and fractures, was considered in isotropic and homogeneous rock formations.
The BEM used in this work consists of the displacement discontinuity (DD) method and the fictitious stress (FS) method. Also, a combined FS-DD numerical model was implemented for the hydraulically or thermally-induced fractures in the vicinity of a wellbore.
The linear elastic fracture mechanics (LEFM) theory was adopted to numerically model within the framework of poroelasticity and thermo-poroelasticity theory. For high accuracy of crack tip modeling, a special displacement discontinuity tip element was developed and extended to capture the pore pressure and temperature influence at the tip. For poroelastic fracture propagation, a steadily propagating crack driven by fluid pressure was modeled to find the effect of pore pressure on crack path under the two limiting poroelastic conditions (undrained and drained). The results indicate that the pore pressure diffusion has no influence on the crack growth under the undrained condition because the crack propagation velocity is too fast for the diffusion effect to take place. On the other hand, its influence on the crack path under the drained condition with its low propagation velocity has significance because it induces a change in principal stress direction, resulting in an alteration of fracture orientation.
For the thermal fracturing, when the rock around a wellbore and a main fracture is cooled by injecting cold water in a hot reservoir, the rapid decrease in temperature gives rise to thermal stress, which causes a crack to initiate and propagate into the rock matrix. The single and multiple fracture propagation caused by transient cooling in both thermoelastic and poro-thermoelastic rock were numerically modeled. The results of this study indicate that the thermal stresses induced by cooling may exceed the in-situ stress in the reservoir, creating secondary fractures perpendicular to main fracture. Furthermore, the faster cooling rate produces longer crack extension of the secondary thermal fractures. This implies that the faster cooling induces a higher tensile stress zone around the fracture, which tends to produce larger driving forces to make the secondary fractures penetrate deeper into the geothermal reservoir.
|
2 |
[en] INFLUENCE OF THE STRESSES OF THERMAL ORIGIN IN PROBLEMS OF ROCK BLOCKS STABILITY / [pt] INFLUÊNCIA DAS TENSÕES DE ORIGEM TÉRMICA EM PROBLEMAS DE ESTABILIDADE DE BLOCOS ROCHOSOSLEONARDO ERIK CHAVEZ BAUTISTA 07 April 2008 (has links)
[pt] No ano 1999 as quedas de blocos rochosos já representaram
cerca de 8%
dos diferentes tipos de escorregamentos registrados no Rio
de Janeiro. A atividade
antrópica gera um aumento das áreas de risco devido às
construções próximas da
base de escarpas rochosas e uma aceleração destes
fenômenos. Desde 1993 o
número de quedas de lascas e blocos rochosos a partir de
faces de pedreiras
desativadas tem aumentado.
As condições geológicas e estruturais da região favorecem
este fenômeno ao
discretizarem blocos nos taludes rochosos. Muitas destas
quedas tem sido
reportadas em condições climáticas particulares, em
períodos relativamente secos
correspondentes aos meses de junho, julho e agosto.
O presente trabalho discute que, dentro dos possíveis
mecanismos para a
ocorrência destes fenômenos, está a variação térmica
diária, a qual pode criar
tensões que favorecem a propagação de fraturas existentes
dentro dos maciços
rochosos.
Por tal motivo, simulou-se em laboratório as condições de
um maciço rochoso
fraturado e obtiveram-se dados das variações diárias de
temperatura, mediante a
disposição de blocos rochosos graníticos simulando a forma
da fratura e com o
auxilio de sensores térmicos em diferentes posições, como
na superfície, no
interior e na fresta. A partir disto elaborou-se um modelo
de bloco com auxílio do
software ABAQUS para se determinar a variação dos valores
de concentração de tensões sob a influência térmica. / [en] In 1999, the falls of rock blocks had represented about 8%
of the different
types of slides registered in Rio de Janeiro. The anthropic
activity generates an
increase of the risk areas due the building of vulnerable
houses near to foot rock
scarps, and an acceleration of these phenomena. Since 1993
the number of falls of
rock blocks from slopes of disactivated quarries has
increased.
The geologic and structural conditions of the region favor
this phenomenon
forming blocks in rock slopes. Many of these falls have
been reported in particular
climatic conditions, in relatively dry periods
correspondents to the months of
June, July and August.
This work argues that, the daily thermal variation could be
one of the possible
mechanisms for the occurrence of these phenomena, which can
create stresses to
propagate cracks already existing on the rock mass.
For such reason, conditions of a broken rock mass was
simulated in laboratory to
obtain daily temperature variations, it was made by the
disposal of granítics rock
blocks simulating a fracture form, where was placed thermal
sensors.
From this, a model of rock block in the ABAQUS sofware was
elaborated to
determine the variation of stress concentration factor
values under the thermal
influence
|
3 |
Aplicação da mecânica de fratura à análise de fundações de barragens de concreto fundadas em rocha / The application of rock mechanics to the analysis of rock foundations of concrete damsHerrera López, Rossana 01 July 2005 (has links)
O presente trabalho de pesquisa está relacionado à análise do progresso do fraturamento na zona tracionada de fundações rochosas de barragens de concreto e suas conseqüências nas avaliações de estabilidade global. Tomou-se como exemplo a barragem de Porto Primavera de propriedade da CESP (Companhia Energética de São Paulo), situada entre os estados de São Paulo e Mato Grosso do Sul, Brasil. Com a ajuda de modelos elaborados com elementos finitos e sob a ótica da mecânica da fratura não linear e da mecânica do dano, analisa-se o desenvolvimento da fratura mediante uma avaliação iterativa tensão-deformação e carga hidráulica. Devido ao carregamento progressivo de água, realiza-se a análise iterativa baseada no avanço da fratura e na aplicação de pressão hidráulica, até quando a fratura deixa de progredir. A simulação numérica proposta tem o objetivo de estudar o desenvolvimento de fraturas, determinar as deformações ocorridas sob a ação das forças de empuxo d'água, de subpressão, do peso próprio e das pressões de água na fratura do maciço rochoso fraturado. As deformações calculadas são comparadas com registros da instrumentação na fundação efetuados durante o enchimento do reservatório, o que permitirá o ajuste dos parâmetros adotados na simulação, assim como estabelecer as reais características da fundação / This study is related to the analysis of crack propagation in the tensioned zone of concrete dam foundation. The example of Porto Primavera dam owned by CESP (São Paulo State Power Company) Brazil is presented. Fracture growth is analyzed by mean iterative stress-strain and hydraulic head analysis with codes based on finite elements incorporating non-linear fracture mechanics and damage models. Due to progressive load of water, a step-by-step analysis is performed, based on the development of fracture and application of forces due of hydraulic pressure. The proposed numerical simulation has the purpose of studying the development of fracture, determining deformations due to the action of uplift pressure, self-weight and hydraulic pressure on the fracture walls. The computed deformations are compared with instrumentation data, obtained during the impoundment of the reservoir, from devices installed in the foundation, which will allow to adjust the adopted parameters in the simulation and to determine the real characteristics of the foundation
|
4 |
Aplicação da mecânica de fratura à análise de fundações de barragens de concreto fundadas em rocha / The application of rock mechanics to the analysis of rock foundations of concrete damsRossana Herrera López 01 July 2005 (has links)
O presente trabalho de pesquisa está relacionado à análise do progresso do fraturamento na zona tracionada de fundações rochosas de barragens de concreto e suas conseqüências nas avaliações de estabilidade global. Tomou-se como exemplo a barragem de Porto Primavera de propriedade da CESP (Companhia Energética de São Paulo), situada entre os estados de São Paulo e Mato Grosso do Sul, Brasil. Com a ajuda de modelos elaborados com elementos finitos e sob a ótica da mecânica da fratura não linear e da mecânica do dano, analisa-se o desenvolvimento da fratura mediante uma avaliação iterativa tensão-deformação e carga hidráulica. Devido ao carregamento progressivo de água, realiza-se a análise iterativa baseada no avanço da fratura e na aplicação de pressão hidráulica, até quando a fratura deixa de progredir. A simulação numérica proposta tem o objetivo de estudar o desenvolvimento de fraturas, determinar as deformações ocorridas sob a ação das forças de empuxo d'água, de subpressão, do peso próprio e das pressões de água na fratura do maciço rochoso fraturado. As deformações calculadas são comparadas com registros da instrumentação na fundação efetuados durante o enchimento do reservatório, o que permitirá o ajuste dos parâmetros adotados na simulação, assim como estabelecer as reais características da fundação / This study is related to the analysis of crack propagation in the tensioned zone of concrete dam foundation. The example of Porto Primavera dam owned by CESP (São Paulo State Power Company) Brazil is presented. Fracture growth is analyzed by mean iterative stress-strain and hydraulic head analysis with codes based on finite elements incorporating non-linear fracture mechanics and damage models. Due to progressive load of water, a step-by-step analysis is performed, based on the development of fracture and application of forces due of hydraulic pressure. The proposed numerical simulation has the purpose of studying the development of fracture, determining deformations due to the action of uplift pressure, self-weight and hydraulic pressure on the fracture walls. The computed deformations are compared with instrumentation data, obtained during the impoundment of the reservoir, from devices installed in the foundation, which will allow to adjust the adopted parameters in the simulation and to determine the real characteristics of the foundation
|
5 |
[en] NUMERICAL SIMULATION OF THE CRACK PROPAGATION PROCESS IN ROCK MATERIAL UNDER FLUIDMECHANIC COUPLING CONDITION / [pt] SIMULAÇÃO NUMÉRICA DO PROCESSO DE PROPAGAÇÃO DE FRATURAS EM MATERIAIS ROCHOSOS EM CONDIÇÕES DE ACOPLAMENTO FLUIDOMECÂNICOLUIS ARNALDO MEJIA CAMONES 27 July 2016 (has links)
[pt] Esta pesquisa aborda o processo de fraturamento hidráulico ou processo
de propagação de fraturas em rocha através da injeção de um fluido sob pressão,
o que gera fissuras no material que se propagam de acordo com a quantidade
de fluido injetado. Esta técnica leva a um incremento da transmissividade
hidráulica da rocha e, como consequência, ocorre um incremento da produção
de óleo. Diversos trabalhos analíticos e numéricos têm sido propostos para
estudar o mecanismo de fratura, geralmente baseados em meios contínuos
ou através da utilização de elementos de interface em uma trajetória de propagação conhecida. Neste trabalho, a propagação de uma fratura é simulada
utilizando o modelo potencial PPR[72] através da sua implementação
extrínseca. Assim, os elementos coesivos de interface são inseridos na malha de
elementos finitos de forma adapativa para capturar o processo de fraturamento.
A pressão do fluido é simulada utilizando o modelo de lattice-Boltzmann[84].
Através de um processo interativo, os contornos da fratura, computados
utilizando o método dos elementos finitos, são transferidos para o modelo de
lattice-Boltzmann como uma condição de contorno. Assim, a força que o fluido
exerce nestes contornos, gerada pela injeção do fluido, pode ser calculada. Estas
forças são utilizadas no modelo de elementos finitos como uma força externa
aplicada nas faces da fratura. A nova posição das faces da fratura é calculada e
transferida novamente para o modelo de lattice-Boltzmann como condição de
contorno. Este processo interativo fluido-estrutura permite modelar o processo
de fraturamento hidráulico em trajetórias de propagação irregulares. / [en] This research addresses hydraulic fracturing or hydro-fracking, i.e. fracture
propagation process in rocks through the injection of a fluid under pressure,
which generates cracks in the rock that propagate according to the
amount of fluid injected. This technique leads to an increase of the hydraulic
transmissivity of the rock mass and, consequently, improves oil production.
Several analytical and numerical models have been proposed to study this
fracture mechanism, generally based in continuum mechanics or using interface
elements through a known propagation path. In this work, the crack propagation
is simulated using the PPR potential-based cohesive zone model[72] by
means of an extrinsic implementation. Thus, interface cohesive elements are
adaptively inserted in the mesh to capture the softening fracture process. The
fluid pressure is simulated using the lattice Boltzmann model[84] through an
iterative procedure. The boundaries of the crack, computed using the finite
element method, are transferred to the lattice Bolztmann model as boundary
conditions, where the fluid pressure (or fluid forces) applied on these boundaries,
caused by the fluid injected, can be calculated. These forces are then
used in the finite element model as external forces applied on the faces of
the crack. The new position of the crack faces is then calculated and transferred
to the lattice-Boltzmann model to update the boundary conditions.
This feedback-loop for fluid-structure interaction allows modeling of hydraulic
fracturing processes for irregular path propagation.
|
6 |
Simulation and design of energized hydraulic fracturesFriehauf, Kyle Eugene 23 October 2009 (has links)
Hydraulic fracturing is essential for producing gas and oil at an economic rate from low permeability sands. Most fracturing treatments use water and polymers with a gelling agent as a fracturing fluid. The water is held in the small pore spaces by capillary pressure and is not recovered when drawdown pressures are low. The un-recovered water leaves a water saturated zone around the fracture face that stops the flow of gas into the fracture. This is a particularly acute problem in low permeability formations where capillary pressures are high. Depletion (lower reservoir pressures) causes a limitation on the drawdown pressure that can be applied. A hydraulic fracturing process can be energized by the addition of a compressible, sometimes soluble, gas phase into the treatment fluid. When the well is produced, the energized fluid expands and gas comes out of solution. Energizing the fluid creates high gas saturation in the invaded zone, thereby facilitating gas flowback. A new compositional hydraulic fracturing model has been created (EFRAC). This is the first model to include changes in composition, temperature, and phase behavior of the fluid inside the fracture. An equation of state is used to evaluate the phase behavior of the fluid. These compositional effects are coupled with the fluid rheology, proppant transport, and mechanics of fracture growth to create a general model for fracture creation when energized fluids are used. In addition to the fracture propagation model, we have also introduced another new model for hydraulically fractured well productivity. This is the first and only model that takes into account both finite fracture conductivity and damage in the invaded zone in a simple analytical way. EFRAC was successfully used to simulate several fracture treatments in a gas field in South Texas. Based on production estimates, energized fluids may be required when drawdown pressures are smaller than the capillary forces in the formation. For this field, the minimum CO2 gas quality (volume % of gas) recommended is 30% for moderate differences between fracture and reservoir pressures (2900 psi reservoir, 5300 psi fracture). The minimum quality is reduced to 20% when the difference between pressures is larger, resulting in additional gas expansion in the invaded zone. Inlet fluid temperature, flowrate, and base viscosity did not have a large impact on fracture production. Finally, every stage of the fracturing treatment should be energized with a gas component to ensure high gas saturation in the invaded zone. A second, more general, sensitivity study was conducted. Simulations show that CO2 outperforms N2 as a fluid component because it has higher solubility in water at fracturing temperatures and pressures. In fact, all gas components with higher solubility in water will increase the fluid’s ability to reduce damage in the invaded zone. Adding methanol to the fracturing solution can increase the solubility of CO2. N2 should only be used if the gas leaks-off either during the creation of the fracture or during closure, resulting in gas going into the invaded zone. Experimental data is needed to determine if the gas phase leaks-off during the creation of the fracture. Simulations show that the bubbles in a fluid traveling across the face of a porous medium are not likely to attach to the surface of the rock, the filter cake, or penetrate far into the porous medium. In summary, this research has created the first compositional fracturing simulator, a useful tool to aid in energized fracture design. We have made several important and original conclusions about the best practices when using energized fluids in tight gas sands. The models and tools presented here may be used in the future to predict behavior of any multi-phase or multi-component fracturing fluid system. / text
|
7 |
[en] ASPECTS OF MODELING FRACTURE PROPAGATION WITH THE EXTENDED FINITE ELEMENT METHOD (XFEM) / [pt] ASPECTOS DA MODELAGEM DA PROPAGAÇÃO DE FRATURAS COM O MÉTODO DOS ELEMENTOS FINITOS ESTENDIDO (XFEM)RENAN MARKS DE OLIVEIRA PEREIRA 05 April 2019 (has links)
[pt] O processo de fraturamento de materiais quase-frágeis requer atenção especial para a predição da direção de propagação de fraturas. A simulação do fraturamento com o método dos elementos finitos (MEF) tem como desvantagem a dependência da trajetória da fratura com respeito à malha adotada. Além disso, há certa dificuldade para os modelos numéricos representarem a fratura em modo misto por conta dos parametros envolvidos. O Método dos Elementos Finitos Estendido (XFEM) é uma técnica que combina o MEF com funções de enriquecimento para representar descontinuidades no campo de deslocamentos. Neste contexto, discutem-se nesta dissertação os critérios para a nucleação e propagação de fraturas e sua implementação no contexto do XFEM. As implementações foram feitas no framework GeMA, um software desenvolvido no Tecgraf / PUC-Rio. Os critérios de propagação de fraturas implementados baseiamse na abordagem das tensões e permitem controlar diferentes geometrias e tamanhos da área de avaliação na ponta da trinca. Um estudo paramétrico é apresentado para modelar uma viga de concreto sob carregamento não proporcional com fratura em modo misto. Foram consideradas diferentes questões como: discretização da malha, zona de avaliação, iniciação e propagação de fraturas e técnicas de controle de solução. Além disso, outros modelos com diferentes condições de contorno foram analisados para validar os critérios em situações complexas. As constatações paramétricas obtidas através do estudo da viga se monstraram válidas para os demais modelos avaliados. As implementações dos critérios de propagação de fraturas no XFEM, demonstraram excelentes concordâncias nas simulações das trajetórias de fraturamento, comparado com os dados experimentais. / [en] The fracture process of quasi-brittle materials requires special attention for the prediction of the direction of fracture propagation. The fracture simulation with the finite element method (FEM) has as its disadvantage the dependence of the fracture trajectory with respect to the mesh adopted. Besides, there is some difficulty for numerical models to represent the fracture in mixed mode because of the parameters involved. The Extended Finite Element Method (XFEM) is a technique which combines the FEM with enrichment functions to represent discontinuities in the displacement field. In this context, this dissertation discusses the criteria for nucleation and propagation of fractures and their implementation in
the context of XFEM. The implementations were made in the GeMA framework, a software developed at Tecgraf / PUC-Rio. The implemented crack growth criteria is based on the stress approach and allows to control different geometries and sizes of the evaluation area in the crack tip. A parametric study is presented for modeling a concrete beam under nonproportional loading with mixed-mode fracture. Different situations were taken into account such as mesh refinement, geometry and size of the evaluation region, crack initiation and propagation and solution control techniques. Also, several models with different loading and boundary conditions were made to validate the criteria under complex situations. The parametric findings obtained through the study of the beam proved to be valid for the other models. The implementations of the fracture propagation criteria in the XFEM demonstrated excellent agreement in the simulations of the fracture trajectories compared to the experimental data.
|
8 |
Fracture propagation and reservoir permeability in limestone-marl alternations of the Jurassic Blue Lias Formation (Bristol Channel Basin, UK)Afsar, Filiz 12 January 2015 (has links)
In geschichteten Reservoiren mit geringer Matrix-Permeabilität kontrollieren überwiegend
Bruchsysteme den Fluidtransport. In Kalk-Mergel-Wechselfolgen sind allerdings die vertikale
Kluftausbreitung sowie die Vernetzung der Kluftsysteme zwischen den unterschiedlichen
Schichten sehr variabel, was schließlich die Permeabilität in diesen bruchkontrollierten
Reservoiren erheblich beeinflusst. Innerhalb einer Schichtfolge führen diverse
sedimentologische Merkmale (z.B. sedimentäre Schichtung und diagenetische Bankung) zu
kontrastreichen Gesteinseigenschaften und wirken somit als Spannungsbarrieren.
Spannungsbarrieren, wie beispielsweise lithologische Kontakte oder mächtige Mergellagen,
können die Kluftausbreitung in geschichteten Gesteinen ebenfalls verhindern und erschweren
zusätzlich die Vorhersage potentieller Fluidwege. Aufgrund dessen ist es entscheidend
Schichten, die sich mechanisch einheitlich verhalten („mechanische Einheit“) zu finden. Das
Ziel dieser Doktorarbeit ist, den Einfluss von sedimentologischen und diagenetischen
Merkmalen und petrophysikalischen Eigenschaften vertikaler Kluftausbreitung in
Kalk-Mergel-Wechselfolgen der Jurassischen Blue Lias Formation (Bristol Channel Becken,
Großbritannien) abzuschätzen, um verschiedenartige Spannungsbarrieren und mechanische
Einheiten zu definieren. Zu diesem Zweck wurden sechs Profile untersucht, welche sich durch
unterschiedliche morphologische Variationen auszeichnen (d.h. von kalkdominiert zu
mergeldominiert). Die Untersuchungen umfassen Kombinationen aus sedimentologischer
(z.B. Geländeuntersuchungen, Dünnschliffpetrografie, Rasterelektronenmikroskopie, CaCO3-
and Corg-Messungen), quantitativ strukturgeologischer (z.B. Charakterisierung von
Kluftsystemen) sowie petrophysikalischer Daten (z.B. Spaltzug- und Druckfestigkeits-,
Rückprallhärte- und Porositäts-Messungen). Im Rahmen der quantitativen
strukturgeologischen Untersuchungen wurden unter Verwendung einer modifizierten Scanline
Methode (Durchführung einer flächengestützten Kluftanalyse) über 4000
schichtübergreifende Klüfte betrachtet.
Generell wird angenommen, dass der Kluftabstand mit zunehmender Bankmächtigkeit
zunimmt und die Kluftdichte dementsprechend abnimmt. Diese Studie zeigt jedoch, dass
dieser Zusammenhang nur eingeschränkt auf Kalkbänke dieser Abfolgen anwendbar ist und
nur auf Schichten mit lateral planaren Oberflächen (wohlgebankte Kalkbänke) übertragen
werden kann. Bei Bänken gleicher Mächtigkeit mit allerdings irregulären Oberflächen
(semiknollige Kalkbänke) variieren die Kluftabstände innerhalb dieser Bänke beträchtlich.
Das bedeutet, die Kluftabstände sind in semiknolligen Kalkbänken eher unregelmäßig
wohingegen die Abstände in wohlgebankten Bänken eher regelmäßig sind. Des Weiteren sind
in wohlgebankten Kalken ein höherer prozentualer Anteil von schichtgebundenen Klüften (57
%) ausgebildet. Dagegen sind in semiknolligen Kalken ein höherer Anteil
nicht-schichtgebundener Klüfte ausgebildet (67 %). Entscheidend für die Kluftausbreitung in
geschichteten Gesteinen ist nicht nur die Kluftverteilung der einzelnen Bänke, sondern auch
verschiedenartige Spannungsbarrieren, wie beispielsweise lithologische Kontakte,
Mächtigkeiten und Heterogenitäten von Mergeln hemmen die Kluftausbreitung. Anhand der
vertikalen Kluftstoppung an lithologischen Kontakten und vertikale Kluftausbreitung durch
Schichten wurden Spannungsbarrieren identifiziert (schichtgebundene vs.
nicht-schichtgebundene Klüfte). Da nicht alle lithologische Kontakte die Ausbreitung von
Klüften in geschichteten Gesteinen verhindern, wurde in dieser Studie der Terminus für 50 %
Kluftstoppung an diesen Kontakten verwendet („mechanische Grenzflächen“). Zusätzlich
wurden bestimmte Mergellagen, die >0.20 m mächtig sind, durch mechanische Grenzflächen
begrenzt sind und weniger als 50 % nicht-schichtgebundene Klüfte beinhalten, als
„mechanische Puffer“ definiert. Die Charakterisierung des Kluftsystems wird neben der
vorherrschenden stark heterogenen Kluftverteilung in der Blue Lias Formation, auch durch
eine signifikante Variation des Diagenese-Einflusses von Abschnitt zu Abschnitt erschwert.
Beispielsweise wurden in Wales drei Teilprofile genauestens untersucht, welche trotz ihrer
räumlich nahen Lage und relativ zeitgleichen Entstehung unterschiedliche sedimentologische
und diagenetische Merkmale in Meter- bis Mikrometer-Skalen aufweisen (von früh lithifiziert
bis physikalisch kompaktierte Abfolgen). Darüber hinaus sind diese durch unterschiedliche
Muster der Kluftstoppung an Kontakten und Kluftausbreitung innerhalb der Bänke
charakterisiert. Lithologische Kontakte in diagenetisch beeinflussten Abfolgen sind
tendenziell eher graduell und somit keine mechanischen Grenzflächen. Wenn zusätzlich der
Unterschied zwischen den CaCO3-Konzentrationen zwischen Kalken und Mergeln niedrig ist,
kann die Abfolge als eine mechanische Einheit definiert werden, welches die
Kluftausbreitung begünstigen würde.
Die Vorhersage der Konnektivität von Kluftnetzwerken ist in lithologisch heterogenen
Kalk-Mergel-Wechselfolgen, wie die in der Blue Lias Formation, aufgrund unterschiedlicher
Kluftverteilung innerhalb einzelner Bänke, unterschiedliche diagenetische Einfluss und
verschiedenartiger Spannungsbarrieren schwierig. Das ist insbesondere für die
Charakterisierung der Kluftnetzwerke und ihre Nutzung in Aufschluss-Analogstudien
problematisch, welche für die Einschätzung des Fluidtransports in solchen Systemen
verwendet wird. Die Ergebnisse dieser Studie sind zur Optimierung der Quantifizierung von
Kluftverteilung und -ausbreitung in heterogenen Gesteinsabfolgen entscheidend und
präzisieren die Definition mechanischer Einheiten. Diese Definition ist eine wichtige
Voraussetzung für die Vorhersage von Kluftpermeabilitäten und folglich entscheidend für
Fluidtransportmodelle.
|
9 |
[en] INVESTIGATION OF HYDRAULIC FRACTURING THROUGH ANALYTICAL AND NUMERICAL MODELS / [pt] INVESTIGAÇÃO DO FRATURAMENTO HIDRÁULICO POR MODELAGENS ANALÍTICA E NUMÉRICARENATO GUTIÉRREZ ESCOBAR 22 November 2016 (has links)
[pt] O processo de fraturamento hidráulico tem sido amplamente usado para aumentar o volume de petróleo e gás extraído na indústria petroleira. Durante a injeção de fluido, uma região determinada do reservatório é fraturada com a finalidade de aumentar a permeabilidade do meio poroso, de tal forma que o fluxo do fluido desde o reservatório para o poço seja favorecido notoriamente. Porém, este processo pode ocasionar danos ambientais tais como contaminação de aguas subterrâneas, vazamentos de gás, fraturas indesejadas nas camadas capeadoras pela injeção de agua e atividade sísmica fazendo primordial um estudo rigoroso do fraturamento hidráulico com a finalidade de reduzir os riscos potenciais associados a esta operação. Umas das metodologias usadas para projetar o fraturamento hidráulico é a simulação computacional. É possível determinar o volume injetado e a potência da bomba de injeção necessária para obter a geometria de fratura (comprimento, abertura e altura) desejada. A modelagem numérica através de elementos coesivos acoplados do processo de fraturamento hidráulico pode ser efetuada considerando o processo transiente ou permanente, tendo geometrias da fratura e curvas de injeção diferentes. Neste trabalho foi simulado numericamente o modelo KGD nos regimes de fluxo transiente e permanente para dois casos de estudo, (1) injeção numa única camada e (2) injeção em três camadas com contraste de tensões e poropressões entre elas. O estudo numérico foi desenvolvido usando o método dos elementos finitos com modelo de zona coesiva no software Abaqus o qual foi comparado com as soluções analíticas do KGD no regime dominado pela rigidez (Vértice-K) para uma camada e de Simonson e Fung para três camadas. / [en] The hydraulic fracturing process has been widely used to improve oil and gas recovery in the petroleum industry. During the fluid injection, the desired section of rock formation is fractured in order to increase the permeability of the medium that can facilitate the flow of oil to a producing well. However, this process can lead to potential environmental risks such as seismic activity, unwanted fractures in cap layers by water injection, water contamination and gas leakage making primordial to develop a rigorous study in order to reduce this environmental risks associated to hydraulic fracturing. One of the studies developed to design the hydraulic fracturing is computational simulation to determine the fluid volume and hydraulic horsepower required in order to produce the wanted fracture geometry (length, opening and height). The numerical modelling of fracturing process by using fully coupled cohesive element hydraulic can be carried out considering either a steady state or a transient analysis, which modify the fracture geometry and injection pressure. In this work, the KGD model is simulated in transient and steady analysis for two cases: (1) injection in a single layer formation and (2) injection in tri-layered formation with stress and porepressure contrast between them. The numerical simulation of a hydraulic fracturing is carried out using the finite element method with the zone cohesive model in Abaqus whose results are compared with analytical solutions of toughness-dominated propagation regime for the one layer formation model and Simonson and Fung analytical solutions for tri-layered formations model.
|
10 |
Characterization of Damage Zones Associated with Laboratory Produced Natural Hydraulic FracturesBradley, Erin 01 January 2012 (has links) (PDF)
Both joint sets and fault-related fractures serve as important conduits for fluid flow. In the former case, they can strongly influence both permeability and permeability anisotropy, with implications for production of water, hydrocarbons and contaminant transport. The latter can affect issues of fluid flow, such as whether a given fault seals or leaks, and fault mechanics. These fractures are commonly interpreted as Natural Hydraulic Fractures (NHFs), i.e., mode 1 fractures produced when pore fluid pressure exceeds the tensile strength of the rock. Various mathematical models have been a rich source of hypotheses to explain the formation and propagation of NHFs, but have provided only limited information and nothing about processes of fracture initiation in originally intact rock. Recent laboratory experiments of French et al. (2012) have advanced our understanding of mechanical controls on fracture initiation and spacing. Here, detailed analysis of both through-going fracture surfaces, non-through-going fractures, in experimentally deformed samples provide a deeper understanding of NHF processes and resulting geometric features in porous siliciclastic sedimentary rocks.
Observations indicate that both fracture planarity and microcrack damage (which has not previously been reported for opening mode fractures) vary significantly depending on the degree of mechanical heterogeneity and anisotropy of the host rock. Variations reflect mechanical controls on fracture initiation and propagation, suggesting that fracture spacing may in part reflect the distribution of mechanical heterogeneities. These data indicate that the more homogeneous the rock, the greater the microcrack damage surrounding a given NHF, increasing expected fracture-associated permeability for a given fracture aperture.
|
Page generated in 0.0775 seconds