• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 324
  • 164
  • 73
  • 20
  • 12
  • 9
  • 8
  • 7
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 690
  • 215
  • 154
  • 128
  • 95
  • 94
  • 92
  • 74
  • 71
  • 65
  • 55
  • 55
  • 53
  • 53
  • 53
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Multi-scale Composite Materials with Increased Design Limits

Suberu, Bolaji A. 22 October 2013 (has links)
No description available.
292

Effect of surface functional groups on chondrocyte behavior using molecular gradients

Motta, Cecilia Margarida Mendes 10 June 2016 (has links)
No description available.
293

Supramolecular Functionalization of Single Walled Carbon Nanotubes with Conjugated Polymers

Patiguli, Yiming 10 1900 (has links)
<p>Single-walled carbon nanotubes (SWNTs) are of special interest in current research due to their extraordinary mechanical, electronic and optical properties. Their unique structure, remarkable thermal and electrical conductivity, and high mechanical strength make SWNTs viable candidates for a wide range of device applications. However, pristine CNTs are not dispersible in most solvents, the main difficulties in CNT applications are related to their purification and solution-phase processing. In recent years, the supramolecular functionalization of SWNTs with conjugated polymers has received significant attention. Research within this field has been driven by the desire to find polymer structures that can selectively disperse certain nanotubes species with high efficiency.</p> <p>After a brief overview of the studies that are related to the investigation of the supramolecular interaction between various conjugated polymers and SWNTs (chapter 1), the synthesis of fluorene and thiophene-based conjugated polymers and their supramolecular complex formation properties with SWNTs are described (chapter 2, 3, 4, 5 and 6). In order to understand the effect that conjugated polymer structure has on formation of supramolecular complexes with SWNTs, various factors were investigated by: (1) altering the polymer backbone composition; (2) varying the polymer molecular weight; (3) introducing different solubilizing groups while the polymer backbone remained the same; (4) changing the polymer conformation. All of the resulting polymer-nanotube assemblies exhibit excellent solution stability in THF in the absence of excess unbound free polymer. The spectroscopic characterization of the polymer-SWNT complex materials indicated that the interaction between the conjugated polymers and SWNTs is strongly influenced by polymer structure.</p> <p>The interaction between a water soluble polythiophene derivative, poly[3-(3-N,N-diethylaminopropoxy)-thiophene] (PDAOT), and SWNTs is discussed in chapter 7. It is also demonstrated that the PDAOT-SWNT complexes form stable aqueous solutions that can be used for the fabrication of highly sensitive amperometric glucose biosensors.</p> / Doctor of Philosophy (PhD)
294

Iron Oxide Nanoparticle Surface Modification: Synthesis and Characterization

Hoff, Richard January 2019 (has links)
Multifunctional nanomaterials can be engineered to aid in the diagnosis of diseases, enable efficient drug delivery, monitor treatment progress over time, and evaluate treatment outcomes. This strategy, known as theranostics, focuses on the combination of diagnostic and therapeutic techniques to provide new clinically safe and efficient personalized treatments. The evaluation of different nanomaterials’ properties and their customization for specific medical applications has therefore been a significant area of interest within the scientific community. Iron oxide nanoparticles, specifically those based on iron (II, III) oxide (magnetite, Fe3O4), have been prominently investigated for biomedical, theranostic applications due to their documented superparamagnetism, high biocompatibility, and other unique physicochemical properties. The aim of this thesis is to establish a viable set of methods for preparing magnetite (iron oxide) nanoparticles through hydrothermal synthesis and modifying their surfaces with organic functional groups in order to both modulate surface chemistry and facilitate the attachment of molecules such as peptides via covalent bond formations. Modifying their surfaces with biomolecules such as peptides can further increase their uptake into cells, which is a necessary step in the mechanisms of their desired biomedical applications. The methods of nanoparticle synthesis, surface functionalization, and characterization involving electron microscopy (e.g., SEM, TEM), zeta potential measurements, size analysis (i.e., DLS), and FT-IR spectroscopy will be presented. / Bioengineering
295

Studies of Alignment of Copper Phthalocyanine Compounds on Au(111) and Sidewall Functionalization of Single-Walled Carbon Nanotubes with Scanning Tunneling Microscopy

Wei, Guoxiu 08 1900 (has links)
<p> This thesis consists of two projects: alignment of copper phthalocyanine compounds on Au(111) and sidewall functionalization of single-walled carbon nanotubes on graphite. Both of these projects are performed with scanning tunneling microscopy (STM), which is used to study the structure of modified surfaces that are of interest in molecular electronics.</p> <p> In the first project, copper phthalocyanine compounds are made into a thin film with different methods, such as solution deposition, self-assembly and Langmuir-Blodgett film deposition. Those films are important materials in photoelectric devices such as organic light emitting diodes (OLED's). Molecules in these films are aligned on the solid surface with face-on orientation or edge-on orientation. However, the films of molecules with face-on orientation are preferentially used in LED's. In this project, we focus on finding a method to force molecules with face-on orientation in the film. The structure of copper octakisalkylthiophthalocyanine films on Au(111) was investigated with STM under ambient conditions. Columns of molecules are commonly observed due to the π-π interaction between molecules. The presence and length of alkyl chains in the molecules affects the alignment of molecules on the gold surface. The weak interaction between molecules and substrate caused the structure to be easily modified by an STM tip.</p> <p> In addition, chemical sidewall functionalization of SWCNTs was also explored with STM under ambient conditions. It was found that the spatial distribution of functional groups on nanotube sidewall is not random. Understanding the rules behind the distribution of functional groups will allow scientists to better control carbon nanotube functionalization and improve the properties of nanotubes. High resolution STM images provide direct evidence of the distribution and the effects of functional groups on nanotubes. Possible mechanisms are proposed to elucidate the process of SWCNT functionalization by free radicals and via the Bingel reaction.</p> / Thesis / Master of Science (MSc)
296

SYNTHESIS AND CHARACTERIZATION OF MAGNETIC CARBON NANOTUBES

Abdalla, Ahmed Mohamed Sayed Ahmed 11 1900 (has links)
The superior properties of carbon nanotubes (CNTs) are best manifest in bulk materials when the CNTs are organized in tandem and embedded in a continuous matrix. Decorating the CNTs with magnetic nanoparticles (MNPs) facilitates their expedient organization with a magnetic field. One of the most convenient methods for their decoration is to first treat the CNTs with oxidative acids, and then coprecipitated MNPs in situ. This method results magnetized CNTs that are covalently functionalized with the MNPs. The associated destruction in the CNTs required running a comparative study of this protocol to identify the influence of the acid treatment on the decoration of multiwalled CNTs (MWNTs). Further, we explore means to tune the physical properties of these magnetized CNTs (mMWNTs) by varying the (1) MNP material composition, and (2) MNP:MWNT (w/w) magnetization weight ratio (γ). The resulted composite materials (mMWNTs) are utilized to synthesize a novel and hitherto unreported class of colloidal suspensions (MCCs) for which the dispersed phase, which consists of MWNTs decorated with MNPs, is both magnetoresponsive and electrically conductive. Synthesis of the dispersed phase merges processes for producing ferrofluids and mMWNTs. Later, these MCCs are adapted and engineered to produce a biological ink containing MWNTs that are twice functionalized, first with MNPs and thereafter with the anti-c-Myc monoclonal antibodies (Abs). The ink is pipetted and dynamically self-organized by an external magnetic field into a dense electrically conducting sensor strip that measures the decrease in current when a sample containing c-Myc antigens (Ags) is deposited on it. On the other side, a nondestructive methods to magnetize MWNTs and provide a means to remotely manipulate them is through the electroless deposition of magnetic nickel nanoparticles on their surfaces. The noncovalent bonds between Ni nanoparticles and MWNTs produce a Ni-MWNT hybrid material (NiCH) that is electrically conductive and has an enhanced magnetic susceptibility and elastic modulus. Raising γ (Ni:MWNT weight ratios) increases the coating layer thickness, which influences the NiCH magnetic properties and tunes its elastic modulus. The NiCH was used to fabricate Ni-MWNT macrostructures and tune their morphologies by changing the direction of an applied magnetic field. Leveraging the hydrophilic Ni-MWNT outer surface, a water-based conductive ink was created and used to print a conductive path that had an electrical resistivity of 5.9 Ωm, illustrating the potential of this material for printing electronic circuits. Further, the NiCHs are introduced into an epoxy matrix at low 0.25-1% volume fractions and aligned along the direction of an applied magnetic field, which produces anisotropic bulk properties. However, nanoparticles aligned in perpendicular directions in sequential layers result in an effectively isotropic composite material. Furthermore, the subsequent annealing of the NiCH in the presence of air oxidizes nickel to nickel oxide whereas carbon is released as gaseous carbon dioxide, which leads to a novel approach for the fabrication of nickel oxide nanotubes (NiONTs) based on MWNTs as a sacrificial template. New chelating polyelectrolytes are used as dispersing agents to achieve high colloidal stability both for NiCH and NiONTs. A gravimetric specific capacitance of 245.3 F g-1 and areal capacitance of 3.28 F cm-2 at a scan rate of 2 mV s-1 is achieved with an electrode fabricated using nickel oxide nanotubes as the active element with a mass loading of 24.1 mg/cm2. / Thesis / Doctor of Philosophy (PhD) / The superior properties of carbon nanotubes (CNTs) are best manifested in bulk materials when the CNTs are organized axially and in tandem, and embedded in a continuous matrix. Decorating the CNTs with magnetic nanoparticles (MNPs) facilitates their organization through “action from a distance” with a magnetic field. The attachment of MNPs to the surfaces of CNTs can be realized through covalent or non-covalent (i.e. physical) bonding. This work develops both methodologies to investigate how the physical properties of magnetized CNT (mCNT) can be tuned and produce new CNT-based nanostructures for particular applications. First, mCNTs are utilized to synthesize a hitherto unreported class of colloidal suspensions based on which a magnetic bio-ink is fabricated to print a fast-response biological sensor. Next, nickel-coated CNTs prepared using electroless deposition are used in the form of a filler at low volume fractions in an epoxy matrix, where they are aligned along multiple-direction using a magnetic field, producing either anisotropic or isotropic bulk properties on demand. Finally, subsequent annealing of nickel-coated CNTs in air oxidizes nickel to nickel oxide while carbon is released in the form of gaseous carbon dioxide. This leads to another novel approach for the fabrication of nickel oxide nanotubes, which are demonstrated to be an alternate viable material to fabricate electrodes for use in supercapacitors.
297

Elaboration et mise en dispositif de nouveaux matériaux électrochromes/électrofluorescents

Seddiki, Ilies 12 1900 (has links)
Les matériaux électrochromes et électrofluorescents sont des matériaux dont les propriétés optiques peuvent être modulées par l’application d’un potentiel. La plupart de ces matériaux sont composés soit de polymères, de petites molécules organiques ou encore d’assemblages donneur-accepteur. L’anthraquinone est une petite molécule biosourcée catégorisée comme colorant, qui lorsqu’elle est fonctionnalisée permet une absorption de la lumière dans la région du visible. Elle présente des fonctions (carbonyle) qui peuvent subir des processus d’oxydo-réduction. Six dérivés d’anthraquinones ont été synthétisés sur lesquels ont été fixés diverses fonctions (amine, alcool, sulfure) sur des positions différentes du cycle aromatique (ortho et para). Dépendamment de la fonction fixée, les six dérivés présentent différentes absorptions (453 à 640 nm), mais toujours dans la région du visible. La caractérisation par électrochimie permet de connaître quels sont les processus réversibles et irréversibles. L’étude de la durée de vie en cyclage a pu montrer que tous les dérivés pouvaient être stables jusqu’à 300 cycles en phase de réduction (-0,81 à -1,54 V). Les propriétés électrochromiques des dérivés ont pu être démontrées par caractérisation spectroélectrochimique, suivie de leurs critères de performance électrochromique (113,3 à 781,2 cm².C-1). Il a été observé que les dérivés possèdent une certaine stabilité colorimétrique par la caractérisation en contraste optique (52,6 à 98,1 %). L’efficacité colorimétrique et la capacité électrochimique ont été calculées et ont permis de constater que certains dérivés étaient de très bons électrochromes. Certains dérivés de couleur jaune, cyan et magenta, ont permis de produire des mélanges binaires et tertiaires. Certains mélanges (tertiaires) démontraient jusqu’à huit transitions colorimétriques lors de l’application d’un potentiel passant de noir jusqu’à transparent. Des phénomènes d’émission ont été mesurés pour quelques dérivés les présentant. Tous les dérivés émissifs possèdent la propriété de solvatochromisme, permettant de moduler leur émission en fonction du solvant utilisé. Un seul dérivé a pu montrer des propriétés d’électrofluorescence. Dépendamment de la longueur d’onde d’excitation, soit l’émission subit des déplacements (hypsochromes et bathochromes), soit il y a désactivation de l’émission. Des calculs théoriques par DFT avec différents modèles ont permis une meilleure compréhension des phénomènes liés à la fonctionnalisation de l’anthraquinone. / The optical properties of electrochromic and electrofluorochromic materials can be modulated with an applied potential. Such organics materials are either molecular or polymer in structure and they usually have donor-acceptor constitutional components. Anthraquinone is a bio-based dye, which when functionalized, absorbs light in the visible region. Anthraquinone is also electroactive and it can be electrochemically reduced and oxidized. Six anthraquinone derivatives were synthesized to examine the effect of both the type of the heteroatom (amine, alcohol, and sulfide) and their regio-substitution on the opto-electronic properties. The absorption of the six anthraquinones varied between 453 and 640 nm in the visible region contingent on the heteroatoms and their regiosubstitution. The anthraquinones retained their reversible electrochemistry with the cathodic redox potential occurring between -0,81 and -1,54 V. The anthraquinones examined were electrochemically stable during 300 cycles of cathodic cyclic voltammetry. The electrochromic behavior of the anthraquinones was confirmed by spectroelectrochemistry and their electrochromic performance was evaluated. Electrochromic measurements confirmed the anthraquinones retained their coloration efficiency (113,3 to 781,2 cm².C-1) and contrast ratio (52,6 to 98,1 %) according to multiple spectroelectrochemical cycles. Leveraging color subtractive theory and the intrinsic primary colors of the anthraquinones (yellow, cyan, and magenta), the spectroelectrochemistry of binary and ternary mixtures of the anthraquinones was examined. Eight colorimetric transitions were possible with an applied potential, transitioning from a composite black color to colorless for the yellow + cyan + magenta ternary mixture. The fluorescence of the anthraquinones was solvatochromic with spectral shifts between 587 and 675 nm contingent on the solvent polarity. Only the 1,5-bis((2- hydroxyethyl)amino) anthraquinone was electrofluorochromic with its intrinsic weak emission being quenched with an applied negative potential. DFT calculations with different functionals helped understand the opto-electronic properties of the functionalized anthraquinones.
298

Self-organization on Nanoparticle Surfaces for Plasmonic and Nonlinear Optical Applications

Chen, Kai 20 January 2010 (has links)
This dissertation is about fabrication and functionalization of metal nanoparticles for use in plasmonic and nonlinear optical (NLO) applications. In the first two chapters, I describe a series of experiments, where I combined silver nanoparticles fabricated by nanosphere lithography with ionic self-assembled multilayer (ISAM) films, tuning the geometry of the particles to make their plasmonic resonances overlap with the frequency of optical excitation. The designed hybrid metallic/organic nanostructures exhibited large enhancements of the efficiency of second harmonic generation (SHG) compared to conventional ISAM films, causing a modified film with just 3 bilayers to be optically equivalent to a conventional 700-1000 bilayer film. SHG responses from Ag nanoparticle-decorated hybrid-covalent ISAM (HCISAM) films were investigated as the next logical step towards high-Ï ²⁺ ISAM films. I found that the plasmonic enhancement primarily stems from interface SHG. Interface effects were characterized by direct comparison of SHG signals from PAH/PCBS ISAM films and PAH/PB HCISAM films. Though interface &chi²⁺ is substantially smaller in PAH/PCBS than in PAH/PB, plasmonically enhanced PAH/PCBS films exhibit stronger NLO response. I propose that the structure of PAH/PB film makes its interface more susceptible to disruptions in the nanoparticle deposition process, which explains our observations. During the fabrication of monolayer crystals for nanosphere lithography, I developed a variation of the technique of convective self-assembly, where the drying meniscus is restricted by a straight-edge located approximately 100 μM above the substrate adjacent to the drying zone. This technique can yield colloidal crystals at roughly twice the growth rate compared to the standard technique. I attribute this to different evaporation rates in the thin wet films in the two cases. I also found that the crystal growth rate depends strongly on the ambient relative humidity. Finally, dithiocarbamate (DTC)-grafted polymers were synthesized and employed to functionalize surfaces of Au nanopartciles. PAH-DTC shows greater stability in different environments than PEI-DTC. I also investigated the stability of PAH-DTC coated particles in suspensions with UV-Vis spectroscopy and autotitration. The covalently bonded PAH-DTC enhances the colloidal stability of the Au nanoparticles and enables subsequent ISAM film deposition onto the particles. / Ph. D.
299

Part I: Synthesis of Aromatic Polyketones Via Soluble Precursors Derived from Bis(A-Amininitrile)S; Part Ii: Modifications of Epoxy Resins with Functional Hyperbranched Poly(Arylene Ester)s

Yang, Jinlian III 24 April 1998 (has links)
Part I: This part of the dissertation describes a new approach to high molecular weight aromatic polyketones via soluble precursors derived from bis(a-aminonitrile)s. Bis(a-aminonitrile)s were easily synthesized from dialdehydes and secondary amines in very high yield by the Strecker reaction. Polymerization of bis(a-aminonitrile)s with activated dihalides using NaH as base in DMF yielded soluble, high molecular weight polyaminonitriles, which were hydrolyzed in acidic conditions to produce the corresponding polyketones. A novel approach to the synthesis of high molecular weight wholly aromatic polyketones without ether linkages or alkyl substituents in the polymeric backbones was demonstrated. These polyketones displayed excellent thermal properties and solvent resistance. A very efficient synthesis for diphenol and activated dihalide monomers containing keto groups was also developed based on a-aminonitrile chemistry. Novel activated dihalide monomers were obtained in quantitative yields. This method is suitable for any activated dihalide by reaction with 2 equivalents of 4-fluorobenzylaminonitrile and NaH, followed by hydrolysis to produce a new monomer with two more p-fluorobenzoyl units. For the synthesis of polyaminonitriles containing ether linkages in the polymeric backbone, only low to medium molecular weight polymers were obtained. The model studies proved that the carbanions of the aminonitriles can react with ether linkages to form more stable phenoxide anions and cause the termination of the polymerization. Part II: Functional hyperbranched poly(arylene ester)s were synthesized by thermal polymerization of 5-acetoxyisophthalic acid or 3,5-diacetoxybenzoic acid. Carboxylic terminated hyperbranched copolyesters were also synthesized by copolymerization of 5-acetoxyisophthalic acid and 3-hydroxybenzoic acid using different molar ratios of these two monomers. Both carboxylic acid and phenolic terminated hyperbranched polyesters were functionalized with different reactive groups. The carboxyl terminated hyperbranched poly(arylene ester)s were successfully used to modify inherently brittle epoxy resins. The hyperbranched polymers were chemically incorporated into the epoxy networks using triphenylphosphine (TPP) as a catalyst and 4,4'-diaminodiphenyl sulfone (DDS) as a curing agent. The chemistry and the proper formation of crosslinked networks were confirmed by solution 1H NMR, solid state CPMAS 13C NMR, kinetic FTIR spectroscopes and gel fraction analysis. Fracture toughness was improved without sacrificing thermal properties. The fracture toughness K1C values of the modified epoxies were found to be a function of the percentage loading, the molecular weights and the proportion of linear units of hyperbranched polyesters. Because the carboxylic acid terminated hyperbranched poly(arylene ester)s were immiscible with the commercially available epoxy EPON 828, the percentage loadings of hyperbranched modifiers were limited and the processibility of epoxy resins was difficult, especially at high percentage loadings of hyperbranched modifiers. These problems could be solved using phenolic terminated hyperbranched poly(arylene ester)s, which are more soluble in epoxy resins. / Ph. D.
300

Functionalized Single Walled Carbon Nanotube/Polymer Nanocomposite Membranes for Gas Separation and Desalination

Surapathi, Anil Kumar 16 November 2012 (has links)
Polymeric membranes for gas separation are limited in their performance by a trade-off between permeability and selectivity. New methods of design are necessary in making membranes, which can show both high permeability and selectivity. A mixed matrix membrane is one such particular design, which brings in the superior gas separation performance of inorganic membranes together with the easy processability and price of the polymers. In a mixed matrix membrane, the inorganic phase is dispersed in the polymeric continuous phase. Nanocomposite membranes have a more sophisticated design with a thin separation layer on top of a porous support. The objective of this research was to fabricate thin SWNT nanocomposite membranes for gas separation, which have both high permeability and selectivity. SWNT/polyacrylic nanocomposite membranes were fabricated by orienting the SWNTs by high vacuum filtration. The orientation of SWNTs on top of the porous support was sealed by UV polymerization. For making these membranes, the CNTs were purified and cut into small open tubes simultaneously functionalizing them with COOH groups. Gas sorption of CO2 in COOH functionalized SWNTs was lower than in purified SWNTs. Permeabilities in etched membrane were higher than Knudsen permeabilities by a factor of 8, and selectivities were similar to Knudsen selectivities. In order to increase the selectivities, SWNTs were functionalized with zwitterionic functional groups. Gas sorption in zwitterion functionalized SWNTs was very low compared to in COOH functionalized SWNTs. This result showed that the zwitterionic functional groups are kinetically blocking the gas molecules from entering the pore of the CNT. SWNT/polyamide nanocomposite membranes were fabricated using the zwitterion functionalized SWNTs by interfacial polymerization. The thickness of the separation layer was around 500nm. Gas permeabilities in the CNT membranes increased with increasing weight percentage of the SWNTs. Gas permeabilities were higher in COOH SWNT membrane than in zwitterion SWNT membrane. Gas selectivities were similar to the Knudsen selectivities, and also to the intrinsic selectivities in the pure polyamide membrane. The water flux in SWNT-polyamide membranes increased with increasing weight percentage of zwitterion functionalized SWNTs, along with a slight increase in the salt rejection. Membranes exhibited less than 1% variability in its performance over three days. / Ph. D.

Page generated in 0.0515 seconds