Spelling suggestions: "subject:"[een] GASIFICATION"" "subject:"[enn] GASIFICATION""
181 |
Formation of CaC2 from CaO and "nascent" carbon species in a rotating-arc reactor.Kim, Chi-sang January 1977 (has links)
Thesis. 1977. Sc.D. cn--Massachusetts Institute of Technology. Dept. of Chemical Engineering. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE. / Bibliography: leaves 222-228. / Sc.D.cn
|
182 |
Gasification of coal char in oxygen and carbon dioxide at high temperatures.Mandel, Gerald January 1977 (has links)
Thesis. 1977. M.S.--Massachusetts Institute of Technology. Dept. of Chemical Engineering. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE. / Bibliography : leaves 146-149. / M.S.
|
183 |
Steady-state simulation of the HYGAS coal gasification process.White, Gary Lee January 1977 (has links)
Thesis. 1977. M.S.--Massachusetts Institute of Technology. Dept. of Chemical Engineering. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE. / Bibliography : leaves 75-76. / M.S.
|
184 |
Estudo de gaseificação de lama de alto forno arcelormital tubarão /Magalhães, Luciana Corrêa. January 2010 (has links)
Resumo: Esta dissertação analisou a viabilidade técnica de gaseificação de lama de alto de alto forno da ArcelorMittal Tubarão para produção de gás visando uma utilização interna. A gaseificação foi conduzida através de simulação em modelo de equilíbrio químico TCW - Termochemical Information and Equlibrium Calculation. Foram simuladas 3 misturas para gaseificação: a) 100% carvão metalúrgico de alto volátil (base das misturas), b) de lama de alto forno com 85% de carvão metalúrgico alto volátil e c) de lama de alto forno com 75% de carvão metalúrgico alto volátil. Os dois parâmetros principais que definiram a viabilidade técnica de gaseificação de lama de alto forno foram poder calorífico inferior - PCI e faixas de trabalho temperaturas no reator. O PCI do gás foi calculado a partir das frações molares de H2 e CO contidas no gás obtidos nas misturas simuladas / Abstract: This dissertation analyzed the technical viability of blast furnace slurry gasification with the objective of using the obtained gas at ArcelorMittal Tubarão. The process was simulated using an equilibrium program, the TCW - Termochemical Information and Equilibrium Calculation. Three mixtures were considered for gasification: a) 100% high volatile metallurgical coal (the base of the mixtures), b) 15% slurry and 85% coal, and c) 25% slurry and 25% coal. The two main parameters that defined the technical viability of the blast furnace slurry were the mixture Low Heat Value (LHV) and the temperature ranges for work in the gasification reactor. The LHV was calculated from the molar fractions of H2 and CO in the gas obtained in the simulation / Orientador: João Andrade de Carvalho Junior / Coorientador: Sergio Leite Lopes / Banca: Luiz Roberto Carrocci / Mestre
|
185 |
One-step Laser-Induced Hydrogen Generation from Coal Powders in WaterSeyitliyev, Dovletgeldi 01 July 2017 (has links)
This study presents a simple way of obtaining hydrogen gas (H2) from various ranks of coal, coke, and graphite using nanosecond laser pulses. Powder samples of coal and graphite with and without water were irradiated with 1064 nm and 532 nm pulses from an Nd: YAG laser for 45 minutes under air and argon atmospheres. It was observed that 532 nm laser pulses were more effective than 1064 nm pulses in gas generation and both were nonlinearly correlated with respect to the laser energy density. Mainly hydrogen (H2) and carbon monoxide (CO) were observed. The H2 to CO ratio shows that the highest efficiency rank was the anthracite coal, with an average ratio of 1.4 due to its high fixedcarbon content and relatively high hydrocarbon amount. Coal samples were characterized by scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy, Thermogravimetric analyzer (TGA), and calorimeter. Graphite was used as a pure carbon source to study the possible reactions of gas yielded during irradiation process. The amount of H2 produced was negligible when graphite powder was exposed under the air and argon atmospheres. On the other hand, H2 was obtained from irradiation of graphite powder in the presence of water due to a possible carbon-water reaction. When coal powders were irradiated under air and argon atmosphere, the amount of produced H2 increased drastically compared to graphite due to the presence of hydrocarbons in coal. In addition, theoretical simulations by a standard finite difference method supported experimental observations.
|
186 |
Non-Catalytic Co-Gasification of Sub-Bituminous Coal and BiomassNyendu, Guevara Che 01 May 2015 (has links)
Fluidization characteristics and co-gasification of pulverized sub-bituminous coal, hybrid poplar wood, corn stover, switchgrass, and their mixtures were investigated. Co-gasification studies were performed over temperature range from 700°C to 900°C in different media (N2, CO2, steam) using a bubbling fluidized bed reactor.
In fluidization experiments, pressure drop (ΔP) observed for coal-biomass mixtures was higher than those of single coal and biomass bed materials in the complete fluidization regime. There was no systematic trend observed for minimum fluidization velocity (Umf) with increasing biomass content. However, porosity at minimum fluidization (εmf) increased with increasing biomass content. Channeling effects were observed in biomass bed materials and coal bed with 40 wt.% and 50 wt.% biomass content at low gas flowrates. The effect of coal pressure overshoot reduced with increasing biomass content.
Co-gasification of coal and corn stover mixtures showed minor interactions. Synergetic effects were observed with 10 wt.% corn stover. Coal mixed with corn stover formed agglomerates during co-gasification experiments and the effect was severe with increase in corn stover content and at 900°C. Syngas (H2 + CO) concentrations obtained using CO2 as cogasification medium were higher (~78 vol.% at 700°C, ~87 vol.% at 800°C, ~93 vol.% at 900°C) than those obtained with N2 medium (~60 vol.% at 700°C, ~65 vol.% at 800°C, ~75 vol.% at 900°C).
Experiments involving co-gasification of coal with poplar showed no synergetic effects. Experimental yields were identical to predicted yield. However, synergetic effects were observed on H2 production when steam was used as the co-gasification medium. Additionally, the presence of steam increased H2/CO ratio up to 2.5 with 10 wt.% hybrid poplar content. Overall, char and tar yields decreased with increasing temperature and increasing biomass content, which led to increase in product gas.
|
187 |
Factors influencing coke gasification with carbon dioxide.Grigore, Mihaela, Materials Science & Engineering, Faculty of Science, UNSW January 2007 (has links)
Of all coke properties the influence of the catalytic mineral matter on reactivity of metallurgical cokes is least understood. There is limited information about the form of minerals in the metallurgical cokes and no information about their relative concentration. A comprehensive study was undertaken for characterisation of mineral matter in coke (qualitative and quantitative), which enabled quantification of the effect of catalytic minerals on the reaction rate, and establishment of the effect of gasification on the mineral phases. Also, the relative importance of coke properties on the gasification reaction rate was determined. The reactivity experiments were performed at approximately 900??C using 100% CO2 under chemically controlled conditions. The mineralogical composition of the investigated cokes was found to vary greatly as did the levels of catalytic mineral phases. These were identified to be metallic iron, iron sulfides and iron oxides. The gasification reaction rate at the initial stages was strongly influenced by the content of catalytic mineral phases and also by the particle size of the catalytic mineral matter. The reaction rate increased as the contact surface between catalyst and carbon matrix increased. Catalytic mineral phases showed a strong influence on the reaction rate at early stages of reaction. But their influence diminished during gasification. At later stages of reaction the influence of micropore surface area became more important. The influence of the catalytic mineral phases diminished during gasification because the catalyst was inactivated to some degree and the contact surface between the catalyst and carbon matrix diminished due to the strong gasification of the carbon around the catalyst particles. The partial inactivation of the catalytic mineral phases occurred because metallic iron and pyrrhotite were oxidised by CO2 to iron oxide, and in turn iron oxide reacted with other mineral phases, which it is associated with, to form minerals that are not catalysts. It is noteworthy that a significant percentage of the mineral matter present in the investigated cokes was amorphous (44 - 75%). The iron, potassium and sodium present in the amorphous phase did not appear to catalyse gasification, but their potential contribution to gasification could not be completely excluded.
|
188 |
Energy system evaluation of thermo-chemical biofuel production : Process development by integration of power cycles and sustainable electricityBojler Görling, Martin January 2012 (has links)
Fossil fuels dominate the world energy supply today and the transport sector is no exception. Renewable alternatives must therefore be introduced to replace fossil fuels and their emissions, without sacrificing our standard of living. There is a good potential for biofuels but process improvements are essential, to ensure efficient use of a limited amount of biomass and better compete with fossil alternatives. The general aim of this research is therefore to investigate how to improve efficiency in biofuel production by process development and co-generation of heat and electricity. The work has been divided into three parts; power cycles in biofuel production, methane production via pyrolysis and biofuels from renewable electricity. The studies of bio-based methanol plants showed that steam power generation has a key role in the large-scale biofuel production process. However, a large portion of the steam from the recovered reaction heat is needed in the fuel production process. One measure to increase steam power generation, evaluated in this thesis, is to lower the steam demand by humidification of the gasification agent. Pinch analysis indicated synergies from gas turbine integration and our studies concluded that the electrical efficiency for natural gas fired gas turbines amounts to 56-58%, in the same range as for large combined cycle plants. The use of the off-gas from the biofuel production is also a potential integration option but difficult for modern high-efficient gas turbines. Furthermore, gasification with oxygen and extensive syngas cleaning might be too energy-consuming for efficient power generation. Methane production via pyrolysis showed improved efficiency compared with the competing route via gasification. The total biomass to methane efficiency, including additional biomass to fulfil the power demand, was calculated to 73-74%. The process benefits from lower thermal losses and less reaction heat when syngas is avoided as an intermediate step and can handle high-alkali fuels such as annual crops. Several synergies were discovered when integrating conventional biofuel production with addition of hydrogen. Introducing hydrogen would also greatly increase the biofuel production potential for regions with limited biomass resources. It was also concluded that methane produced from electrolysis of water could be economically feasible if the product was priced in parity with petrol. / <p>QC 20121127</p>
|
189 |
Thermodynamic performance assessment of three biomass-based hydrogen production systemsCohce, Mehmet Kursad 01 April 2010 (has links)
Hydrogen is likely to be an important energy carrier in the future. It can be produced by the steam reforming of natural gas, coal gasification and water electrolysis among other processes. However current processes are not sustainable because they use fossil fuels or electricity from non-renewable resources. In this context, this thesis focuses on biomass based-hydrogen production and considers three plants intended for sustainable producing hydrogen using. These three systems are analyzed thermodynamically using Aspen Plus and their performances are examined and compared in regards to hydrogen yield. Therefore, comparisons of the systems are made based on several factors, including energy and exergy efficiencies. In addition, an economic analysis is performed in order to determine the minimum hydrogen production cost for these three systems. The results are expected to be useful to efforts for the design, optimization and modification of hydrogen production and other related processes. In the three system considered, the gasifiers are modelled using the Gibbs free energy minimization approach and chemical equilibrium considerations. Gasification, which is characterized by partial oxidation, is a vital component of several clean energy technologies including the ones considered here. Parametric analyses are carried out of several factors influencing the thermodynamic efficiency of biomass gasification.
The energy efficiencies were found to be between 22-33% for all systems. However the exergy efficiencies range from around 22 to 25%. It was also found that gasifier produces the greatest quantity of entropy, due to its high irreversibility, and merits attention from those seeking to improve efficiencies. It was found that the hydrogen production cost range varies between 1.28 and 1.84 $/kg for the three systems; this is higher than the cost for that produced from conventional oil. / UOIT
|
190 |
Hydrogen or syn gas production from glycerol using pyrolysis and steam gasification processesValliyappan, Thiruchitrambalam 04 January 2005
Glycerol is a waste by-product obtained during the production of biodiesel. Biodiesel is one of the alternative fuels used to meet our energy requirements and also carbon dioxide emission is much lesser when compared to regular diesel fuel. Biodiesel and glycerol are produced from the transesterification of vegetable oils and fats with alcohol in the presence of a catalyst. About 10 wt% of vegetable oil is converted into glycerol during the transesterification process. An increase in biodiesel production would decrease the world market price of glycerol. The objective of this work is to produce value added products such as hydrogen or syn gas and medium heating value gas from waste glycerol using pyrolysis and steam gasification processes. <p> Pyrolysis and steam gasification of glycerol reactions was carried out in an Inconel®, tubular, fixed bed down-flow reactor at atmospheric pressure. The effects of carrier gas flow rate (30mL/min-70mL/min), temperature (650oC-800oC) and different particle diameter of different packing material (quartz - 0.21-0.35mm to 3-4mm; silicon carbide 0.15 to 1mm; Ottawa sand 0.21-0.35mm to 1.0-1.15mm) on the product yield, product gas volume, composition and calorific value were studied for the pyrolysis reactions. An increase in carrier gas flow rate did not have a significant effect on syn gas production at 800oC with quartz chips diameter of 3-4mm. However, total gas yield increased from 65 to 72wt% and liquid yield decreased from 30.7 to 19.3wt% when carrier gas flow rate decreased from 70 to 30mL/min. An increase in
reaction temperature, increased the gas product yield from 27.5 to 68wt% and hydrogen yield from 17 to 48.6mol%. Also, syn gas production increased from 70 to 93 mol%. A change in particle size of the packing material had a significant increase in the gas yield and hydrogen gas composition. Therefore, pyrolysis reaction at 800oC, 50mL/min of nitrogen and quartz particle diameter of 0.21-0.35mm were optimum reaction parameter values that maximise the gas product yield (71wt%), hydrogen yield (55.4mol%), syn gas yield (93mol%) and volume of product gas (1.32L/g of glycerol). The net energy recovered at this condition was 111.18 kJ/mol of glycerol fed. However, the maximum heating value of product gas (21.35 MJ/m3) was obtained at 650oC, 50mL/min of nitrogen and with a quartz packing with particle diameter of 3-4mm. <p>The steam gasification of glycerol was carried out at 800oC, with two different packing materials (0.21-0.35mm diameter of quartz and 0.15mm of silicon carbide) by changing the steam to glycerol weight ratio from 0:100 to 50:50. The addition of steam to glycerol increased the hydrogen yield from 55.4 to 64mol% and volume of the product gas from 1.32L/g for pyrolysis to 1.71L/g of glycerol. When a steam to glycerol weight ratio of 50:50 used for the gasification reaction, the glycerol was completely converted to gas and char. Optimum conditions to maximize the volume of the product gas (1.71L/g), gas yield of 94wt% and hydrogen yield of 58mol% were 800oC, 0.21-0.35mm diameter of quartz as a packing material and steam to glycerol weight ratio of 50:50. Syn gas yield and calorific value of the product gas at this condition was 92mol% and 13.5MJ/m3, respectively. The net energy recovered at this condition was 117.19 kJ/mol of glycerol fed. <p>The steam gasification of crude glycerol was carried out at 800oC, quartz size of 0.21-0.35mm as a packing material over the range of steam to crude glycerol weight ratio from 7.5:92.5 to 50:50. Gasification reaction with steam to glycerol weight ratio of 50:50 was the optimum condition to produce high yield of product gas (91.1wt%), volume of gas (1.57L/g of glycerol and methanol), hydrogen (59.1mol%) and syn gas (79.1mol%). However, the calorific value of the product gas did not change significantly by increasing the steam to glycerol weight ratio.
|
Page generated in 0.0273 seconds