• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 326
  • 74
  • 43
  • 39
  • 32
  • 17
  • 13
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 672
  • 271
  • 196
  • 118
  • 110
  • 100
  • 87
  • 75
  • 68
  • 68
  • 65
  • 63
  • 56
  • 56
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Hydropyrolysis of various biomass materials on coals with catalysts

Nikkhah, Khosrow 01 January 1992 (has links)
An extensive study of intrinsic and extrinsic factors on biomass pyrolysis reactions is needed if valuable hydrocarbon gases are to be produced from pyrolysis of biomass. In the first phase of this study a spent coffee waste material was pyrolysed in a stainless steel batch reactor at 500 to 900°C with both N<sub>2</sub> and H<sub>2</sub> carrier gases. The use of H<sub>2</sub> gas did not affect the product distribution. Yields of pyrolysis gas products reached 61 and 74 wt% of the feed at 900°C for N<sub>2</sub> and H<sub>2</sub> carrier gases. Corresponding mass balance closures were obtained at 86 and 98 wt% of the feed. Catalytic effect of the stainless steel wall was confirmed. Maximum conversion of CO was found at pyrolysis zone temperature of 700°C. Pyrolysis experiments with spent coffee performed in a quartz (inert) batch reactor proved that the carrier gas had negligible influence on the primary pyrolysis product distribution. Pyrolysis with K<sub>2</sub>CO<sub>3</sub> at 650, 700, and 800°C, showed catalysis of cracking reactions of pyrolysis tars and the water-gas shift reaction. Copyrolysis of biomass materials and coals were performed in the quartz reactor with the objective of producing a higher hydrocarbon content gas product. Copyrolysis of spent coffee and lignite coal at 800°C in a hydrogen atmosphere resulted in gas production of more than 45 wt% of the feed, compared with only 27 wt% for pure coal sample. Increases in production of CH<sub>4</sub> and C<sub>2</sub>H<sub>4</sub> were 15.9 wt% and 21.3 Wt%. For copyrolysis with sub-bituminous coal, these synergistic increases were 36.5 wt% and 23.9 wt%. In the final phase of this research, a fluidized bed reactor was used to study hydropyrolysis of cellulose, spent coffee, aspen-poplar, bagasse and lignite coal in presence of sand (inert medium), ã-alumina catalyst, Engelhard US-260 (a silica alumina catalyst), 10 wt% nickel-ã-alumina, 10 wt% cobalt-ã-alumina and a 40 wt% nickel-refractory support catalyst. Over the temperature range of 500 to 600°C, the 10 wt% nickel catalyst was most effective in conversion of biomass. Overall it was found that the combination of cellulose with 10 wt% Ni catalyst at 550°C was the optimum catalyst-feed system for conversion of carbon content of biomass to methane. In this case the yield of CH<sub>4</sub> was 46.7 wt% of cellulose. Rate constants for (primary) pyrolysis, (secondary) tar-cracking and (tertiary) hydrogenation reactions at 550°C were determined. Rate constants for the above mentioned reactions were estimated to be k<sub>1</sub>=2.88 s<sup>-1</sup> (pyrolysis model), k<sub>1</sub>=2.88 and k<sub>2</sub>=1.31 s<sup>-1</sup> (pyrolysis-cracking model), and k<sub>1</sub>=2.88, k<sub>2</sub>=13.1 and k<sub>3</sub>=12.96 s<sup>-1</sup> (pyrolysis-cracking-hydrogenation model).
192

Hydrogen or syn gas production from glycerol using pyrolysis and steam gasification processes

Valliyappan, Thiruchitrambalam 04 January 2005 (has links)
Glycerol is a waste by-product obtained during the production of biodiesel. Biodiesel is one of the alternative fuels used to meet our energy requirements and also carbon dioxide emission is much lesser when compared to regular diesel fuel. Biodiesel and glycerol are produced from the transesterification of vegetable oils and fats with alcohol in the presence of a catalyst. About 10 wt% of vegetable oil is converted into glycerol during the transesterification process. An increase in biodiesel production would decrease the world market price of glycerol. The objective of this work is to produce value added products such as hydrogen or syn gas and medium heating value gas from waste glycerol using pyrolysis and steam gasification processes. <p> Pyrolysis and steam gasification of glycerol reactions was carried out in an Inconel®, tubular, fixed bed down-flow reactor at atmospheric pressure. The effects of carrier gas flow rate (30mL/min-70mL/min), temperature (650oC-800oC) and different particle diameter of different packing material (quartz - 0.21-0.35mm to 3-4mm; silicon carbide 0.15 to 1mm; Ottawa sand 0.21-0.35mm to 1.0-1.15mm) on the product yield, product gas volume, composition and calorific value were studied for the pyrolysis reactions. An increase in carrier gas flow rate did not have a significant effect on syn gas production at 800oC with quartz chips diameter of 3-4mm. However, total gas yield increased from 65 to 72wt% and liquid yield decreased from 30.7 to 19.3wt% when carrier gas flow rate decreased from 70 to 30mL/min. An increase in reaction temperature, increased the gas product yield from 27.5 to 68wt% and hydrogen yield from 17 to 48.6mol%. Also, syn gas production increased from 70 to 93 mol%. A change in particle size of the packing material had a significant increase in the gas yield and hydrogen gas composition. Therefore, pyrolysis reaction at 800oC, 50mL/min of nitrogen and quartz particle diameter of 0.21-0.35mm were optimum reaction parameter values that maximise the gas product yield (71wt%), hydrogen yield (55.4mol%), syn gas yield (93mol%) and volume of product gas (1.32L/g of glycerol). The net energy recovered at this condition was 111.18 kJ/mol of glycerol fed. However, the maximum heating value of product gas (21.35 MJ/m3) was obtained at 650oC, 50mL/min of nitrogen and with a quartz packing with particle diameter of 3-4mm. <p>The steam gasification of glycerol was carried out at 800oC, with two different packing materials (0.21-0.35mm diameter of quartz and 0.15mm of silicon carbide) by changing the steam to glycerol weight ratio from 0:100 to 50:50. The addition of steam to glycerol increased the hydrogen yield from 55.4 to 64mol% and volume of the product gas from 1.32L/g for pyrolysis to 1.71L/g of glycerol. When a steam to glycerol weight ratio of 50:50 used for the gasification reaction, the glycerol was completely converted to gas and char. Optimum conditions to maximize the volume of the product gas (1.71L/g), gas yield of 94wt% and hydrogen yield of 58mol% were 800oC, 0.21-0.35mm diameter of quartz as a packing material and steam to glycerol weight ratio of 50:50. Syn gas yield and calorific value of the product gas at this condition was 92mol% and 13.5MJ/m3, respectively. The net energy recovered at this condition was 117.19 kJ/mol of glycerol fed. <p>The steam gasification of crude glycerol was carried out at 800oC, quartz size of 0.21-0.35mm as a packing material over the range of steam to crude glycerol weight ratio from 7.5:92.5 to 50:50. Gasification reaction with steam to glycerol weight ratio of 50:50 was the optimum condition to produce high yield of product gas (91.1wt%), volume of gas (1.57L/g of glycerol and methanol), hydrogen (59.1mol%) and syn gas (79.1mol%). However, the calorific value of the product gas did not change significantly by increasing the steam to glycerol weight ratio.
193

Kinetics of Autocausticization Using Borates in a Black Liquor Gasification Process

Gershon, Daniel 09 April 2004 (has links)
The path of research in the pulp and paper industry is heading towards the elimination of the lime cycle, which requires large amounts of energy, and changing the conventional recovery boiler system to a gasification process that will reduce the possibility of smelt water explosions while meeting future environmental regulations. Research has been carried out on both gasification processes and on causticizing processes that can replace or complement the lime cycle, however very little research has gone into the actual kinetics of causticization using black liquor in gasification processes. This research project fills in some of the missing knowledge in the area of kinetics of autocausticization reactions, which entails the use of borates as the autocausticizing agent. A temperature dependent kinetic model coupled with a mass transfer coefficient has been developed and compared to experimental data.
194

Fixed Bed Countercurrent Low Temperature Gasification of Dairy Biomass and Coal-Dairy Biomass Blends Using Air-Steam as Oxidizer

Gordillo Ariza, Gerardo 2009 August 1900 (has links)
Concentrated animal feeding operations such as cattle feedlots and dairies produce a large amount of manure, cattle biomass (CB), which may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. However, the concentrated production of low quality CB at these feeding operations serves as a good feedstock for in situ gasification for syngas (CO and H2) production and subsequent use in power generation. A small scale (10 kW) countercurrent fixed bed gasifier was rebuilt to perform gasification studies under quasisteady state conditions using dairy biomass (DB) as feedstock and various air-steam mixtures as oxidizing sources. A DB-ash (from DB) blend and a DB-Wyoming coal blend were also studied for comparison purposes. In addition, chlorinated char was also produced via pure pyrolysis of DB using N2 and N2-steam gas mixtures. The chlorinated char is useful for enhanced capture of Hg in ESP of coal fired boilers. Two main parameters were investigated in the gasification studies with air-steam mixtures. One was the equivalence ratio ER (the ratio of stochiometric air to actual air) and the second was the steam to fuel ratio (S:F). Prior to the experimental studies, atom conservation with i) limited product species and ii) equilibrium modeling studies with a large number of product species were performed on the gasification of DB to determine suitable range of operating conditions (ER and S:F ratio). Results on bed temperature profile, gas composition (CO, CO2, H2, CH4, C2H6, and N2), gross heating value (HHV), and energy conversion efficiency (ECE) are presented. Both modeling and experimental results show that gasification under increased ER and S:F ratios tend to produce rich mixtures in H2 and CO2 but poor in CO. Increased ER produces gases with higher HHV but decreases the ECE due to higher tar and char production. Gasification of DB under the operating conditions 1.59<ER less than6.36 and 0.35<s:f>less than0.8 yielded gas mixtures with compositions as given below: CO (4.77 - 11.73 %), H2 (13.48 - 25.45%), CO2 (11-25.2%), CH4 (0.43-1.73 %), and C2H6 (0.2- 0.69%). In general, the bed temperature profiles had peaks that ranged between 519 and 1032 degrees C for DB gasification.
195

Gasification of Low Ash Partially Composted Dairy Biomass with Enriched Air Mixture

Thanapal, Siva Sankar 2010 December 1900 (has links)
Biomass is one of the renewable and non-conventional energy sources and it includes municipal solid wastes and animal wastes in addition to agricultural residue. Concentrated animal feeding operations produce large quantities of cattle biomass which might result in land and water pollution if left untreated. Different methods are employed to extract the available energy from the cattle biomass (CB) which includes co-firing and gasification. There are two types of CB: Feedlot biomass (FB), animal waste from feedlots and dairy biomass (DB), animal waste from dairy farms. Experiments were performed in the part on gasification of both FB and DB. Earlier studies on gasification of DB with different steam-fuel ratios resulted in increased production of hydrogen. In the present study, dairy biomass was gasified in a medium with enriched oxygen percentage varying from 24% to 28%. The effect of enriched air mixture, equivalence ratio and steam-fuel ratio on the performance of gasifier was studied. Limited studies were done using a mixture of carbon dioxide and oxygen as the gasification medium and also a methodology was developed to determine the gasification efficiency based on mass and heat contents of gas. The results show that the peak temperature within the bed increases with increase in oxygen concentration in the gasification medium. Also carbon dioxide concentration in the mixture increases with corresponding decrease in carbon monoxide with increase in oxygen concentration of the incoming gasification medium. The peak temperature increased from 988°C to 1192°C as the oxygen concentration increased from 21% to 28% at ER=2.1. The upper limit on oxygen concentration is limited to 28% due to high peak temperature and resulting ash agglomeration. Higher heating value (HHV) of the gases decreases with increase in equivalence ratio. The gases produced using carbon dioxide and oxygen mixture had a higher HHV when compared to that of air and enriched air gasification. Typically the HHV of the gases increased from 2219 kJ/m³ to 3479 kJ/m³ when carbon dioxide and oxygen mixture is used for gasification instead of air at ER=4.2 in the absence of steam.
196

Biochar, a novel low ash matrix for the chemchar gasification

Bapat, Harshavardhan D. January 1999 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1999. / Typescript. Vita. Includes bibliographical references. Also available on the Internet.
197

Pyrolysis and gasification of lignin and effect of alkali addition

Kumar, Vipul. January 2009 (has links)
Thesis (Ph.D)--Chemical Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Sujit Banerjee; Committee Co-Chair: Wm. James Frederick, Jr.; Committee Member: John D. Muzzy; Committee Member: Kristiina Iisa; Committee Member: Preet Singh. Part of the SMARTech Electronic Thesis and Dissertation Collection.
198

Förgasning av avfall för vätgasproduktion : Integration av en förgasningsprocess i ett värmeverk / Hydrogen production through waste gasification : Integration of a gasification process into a heat plant

Hognert, Johannes January 2015 (has links)
Avfall och fossila bränslen står för två svåra miljöproblem i världen idag. I takt med att populationen ökar i världen ökar konsumtion och därmed avfallsmängden men också användningen av fossila bränslen. När avfallsmängden ökar växer också behovet för sofistikerade avfallsbehandlingsmetoder och när fossila bränslen fortsätter att dominera energimarknaden så krävs alternativa bränslen. Detta arbete har utförts i syfte att utforska en metod där båda dessa problem hanteras på ett nytänkande sätt. En förgasningsprocess där avfall förgasas och vätgas kan extraheras ur den syntetiska gasen är en ny väg att utforska en avfallshantering där produkten dessutom kan användas som substitut till fossila bränslen. Förgasning är en kemisk återvinningsmetod där ett kolbaserat substrat oxideras i en miljö med begränsad eller ingen tillgång till syre. Den kemiska processen är inte helt olik förbränning och faktum är att även förbränningsreaktioner sker under förgasningsprocessen. Den begränsade syremiljön gör dock att de blir begränsade. Det är istället andra oxideringsreaktioner som oxiderar bränslet. Processen kan vara både endo- och exotermisk beroende på oxideringsmedel. Används ånga som oxideringsmedel måste värme tillföras systemet. Detta arbete har utformats efter en studie utförd av He et al. (2009a) som i laboratorieskala producerat en syntetisk gas med högt vätgasinnehåll och hög kvalitet i form av låg tjärhalt. Förgasningsmetoden har därför efterliknat denna studie. En skillnad är förgasningsreaktorn som i denna studie har anpassats så att värmetransport är möjlig från en värmepanna där förbränning av biobränsle sker. Detta är anledningen till att en förgasningskammare av typen dubbelbäddsförgasare har valts. Värmepannan som används är Hovhults värmepanna i Uddevalla som ägs av Uddevalla Energi och data för 2014 års drift har erhållits. Modellen som har byggts upp med hjälp av Excel har fokuserat på främst energiflöden utav ett system där förgasningsreaktor, värmepanna, ångcykel, vätgasseparation och gasturbin ingår. I systemet har energiflöden integrerats så gott det går för att bevara energi inom systemet men även för att säkerställa att fjärrvärmebehovet möts. Vidare har även en juridisk del ingått med syftet att kunna klassificera anläggningen och avgöra i vilket skede avfallet upphör att vara avfall och när en produkt har skapats i förgasningsprocessen. Resultatet visar att fjärrvärmebehovet blir bemött samtidigt som el- och vätgasproduktion sker med en total verkningsgrad för systemet som beräknats till 82,5 %. Under främst sommarmånaderna produceras också en mängd överskottsvärme för vilken användningsområden måste hittas. Vidare har den juridiska analysen av det tidigare fallet C-317/07 Lahti Energia gett tolkningen att förgasningskammaren klassas som en samförbränningsanläggning som producerar en produkt, vätgas. Produkten antas bildas i ögonblicket då avfallet förgasas och övergår till gasform. / Waste and fossil fuels count as two great threats for the environment in today’s society. As the world population continues to increase so does consumption and levels of waste plus the usage of fossil fuels. When the waste levels keep increasing the demand for waste treatment methods becomes higher than ever. Combine this with the increasing usage of fossil fuel which feeds the demand for alternative fuels. This master thesis has been carried out to evaluate a method in which both of these global issues are addressed. Hydrogen production through gasification of municipal solid waste is a new method of waste treatment where the product has the potential to replace fossil fuels. Gasification is a chemical recycling method in which a carbon-based material gets oxidized in an oxygen free or limited environment. The chemical process is not far from traditional oxidation, combustion. The fact is that also traditional combustion reactions have a certain role within a gasification process although full combustion is avoided due to the lack of oxygen. The gasification of waste is commenced with an oxidant such as pure oxygen or steam. Depending on the oxidant the process can be either endothermic or exothermic. If steam is used as an oxidant the process is endothermic and heat has to be introduced to the system. The gasification study issued by He et al. (2009a) is widely used as a reference in this thesis because of their result producing a syngas with high hydrogen level and low tar content. As far as possible the gasification method of this thesis has been imitative to the one of He et al. (2009a) with the only difference being an adjustment so that heat transfer is possible from Hovhult heat plant. This is the reason why a double fluidized bed has been chosen as gasification reactor. The heat plant is located at Hovhult in Uddevalla and data has been delivered by Uddevalla Energi from their production during 2014. The main focus of the thesis is to calculate the energy flows of the system, which includes the gasification reactor, the heat plant, hydrogen separation, steam and gas turbine. These calculations have been carried out in a model that has been built in Excel. The energy flows and the processes within the system have been integrated in a way so that energy conservation within the system is maximized. In addition, the heat demand from the district heat network has been met in all cases. Furthermore, Swedish and European legislation has been investigated in order to classify the combined gasification and heat plant and determine where in the process the waste is considered to be a product instead of waste. The result shows that enough heat is produced to meet the district heat requirements and also that hydrogen and electricity can be produced during the process. The energy efficiency of the system has been calculated to 82.5 %. A problem that needs to be handled is the amount of excess heat produced during the summer months. The analysis of the legislation regarding waste and especially the Lahti Energia Case C-317/07 shows that the gasification unit should be classified as a co-incineration plant that produces hydrogen. The waste is assumed to transform into a product the instant it is gasified.
199

Combustion of gasified biomass: : Experimental investigation on laminar flame speed, lean blowoff limit and emission levels

Binti Munajat, Nur Farizan January 2013 (has links)
Biomass is among the primary alternative energy sources that supplements the fossil fuels to meet today’s energy demand. Gasification is an efficient and environmental friendly technology for converting the energy content in the biomass into a combustible gas mixture, which can be used in various applications. The composition of this gas mixture varies greatly depending on the gasification agent, gasifier design and its operation parameters and can be classified as low and medium LHV gasified biomass. The wide range of possible gas composition between each of these classes and even within each class itself can be a challenge in the combustion for heat and/or power production. The difficulty is primarily associated with the range in the combustion properties that may affect the stability and the emission levels. Therefore, this thesis is intended to provide data of combustion properties for improving the operation or design of atmospheric combustion devices operated with such gas mixtures. The first part of this thesis presents a series of experimental work on combustion of low LHV gasified biomass (a simulated gas mixture of CO/H2/CH4/CO2/N2) with variation in the content of H2O and tar compound (simulated by C6H6). The laminar flame speed, lean blowoff limit and emission levels of low LHV gasified biomass based on the premixed combustion concept are reported in paper I and III. The results show that the presence of H2O and C6H6 in gasified biomass can give positive effects on these combustion parameters (laminar flame speed, lean blowoff limit and emission levels), but also that there are limits for these effects. Addition of a low percentage of H2O in the gasified biomass resulted in almost constant laminar flame speed and combustion temperature of the gas mixture, while its NOx emission and blowoff temperature were decreased. The opposite condition was found when H2O content was further increased. The blowoff limit was shifted to richer fuel equivalence ratio as H2O increased. A temperature limit was observed where CO emission could be maintained at low concentration. With C6H6 addition, the laminar flame speed first decreased, achieved a minimum value, and then increased with further addition of C6H6. The combustion temperature and NOx emission were increased, CO emission was reduced, and blowoff occurs at slightly higher equivalence ratio and temperature when C6H6 content is increased. The comparison with natural gas (simulated by CH4) is also made as can be found in paper I and II. Lower laminar flame speed, combustion temperature, slightly higher CO emission, lower NOx emission and leaner blowoff limit were obtained for low LHV gas mixture in comparison to natural gas. In the second part of the thesis, the focus is put on the combustion of a wide range of gasified biomass types, ranging from low to medium LHV gas mixture (paper IV). The correlation between laminar flame speed or lean blowoff limit and the composition of various gas mixtures was investigated (paper IV). It was found that H2 and content of diluents have higher influence on the laminar flame speed of the gas mixture compared to its CO and hydrocarbon contents. For lean blowoff limit, the diluents have the greatest impact followed by H2 and CO. The mathematical correlations derived from the study can be used to for models of these two combustion parameters for a wide range of gasified biomass fuel compositions. / <p>QC 20130411</p>
200

Cyclone Performance for Reducing Biochar Concentrations in Syngas

Saucier, David Shane 16 December 2013 (has links)
Cotton gins have a readily available supply of biomass that is a by-product of cotton ginning. A 40 bph - cotton gin processing stripped cotton must manage 2,600 to 20,000 tonnes of cotton gin trash (CGT) annually. CGT contains approximately 16.3 MJ/kg (7000 Btu/lb.). CGT has the potential to serve as a renewable energy source. Gasification of biomasses such as CGT can offer processing facilities the opportunity to transform their waste biomass into electricity. The gasification of CGT yields 80% synthesis gas (syngas) and 20% biochar. The concentration of biochar in the syngas needs to be reduced prior to the direct fueling of an internal combustion engine driving a generator for electricity production. It was estimated that direct fueling of an internal combustion engine with syngas to drive the generator to produce electricity would cost $1M per megawatt (MW). In contrast, a 1MW system that consists of a boiler and steam turbine would cost $2M/MW. The current provisional patent for the TAMU fluidized bed gasification (FBG) unit uses a 1D2D and 1D3D cyclone for the removal of biochar. A cyclone test stand was designed and constructed to evaluate cyclone capture efficiencies of biochar. A statistical experiment design was used to evaluate cyclone performances for varying concentrations of biochar. A total of 24 tests for the 1D2D and 36 tests for the 1D3D cyclone were conducted at ambient conditions. Average collection efficiency for the 1D2D cyclone was 96.6% and 96.9% for the 1D3D cyclone. An analysis on the cyclone’s pressure drop was performed to compare the change in pressure drop from air only passing through the cyclone and when the cyclones are loaded with biochar. The average change in pressure drop for the 1D2D cyclone was a decrease of 74%, and the average change in pressure drop for the 1D3D cyclone was a decrease of 36%. An economic feasibility study was conducted to determine the price per kWh to produce electricity for a CGT fueled internal combustion engine power plant (ICPP) and a boiler and steam turbine power plant (SPP). The simulated cotton gin is a 40 bph rated facility operating for 2,000 hours a season (200% utilization) processing stripped cotton that yields approximately 180 kg/bale (400 lbs/bale) of CGT. Revenues consist of the electricity and natural gas expenses incurred during the ginning season, along with the extra electricity produced and sold back to the utility company at the whole price. Loan payments and operating costs include labor, maintenance, taxes, and insurance. Labor costs, the selling price of electricity and biochar are varied in the economic model. The ICPP has a NPV of $1,480,000, and the SPP has a NPV of -$160,000, under the base assumptions. The sensitivity analysis resulted in the selling price of electricity as having the largest change on the NPV for both of the power plants. The average predicted purchase price of electricity is $0.10/kWh for the twenty year simulation. The average price to produce electricity, with no source of revenue generation for the ICPP is $0.20/kWh and $0.26/kWh for the SPP.

Page generated in 0.0407 seconds