• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 94
  • 51
  • 44
  • 9
  • 9
  • 7
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 251
  • 251
  • 71
  • 68
  • 55
  • 52
  • 51
  • 49
  • 49
  • 38
  • 36
  • 36
  • 35
  • 33
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Automatizovaný návrh obrazových filtrů na základě stromového genetického programování / Towards the Automatic Design of Image Filters Based on Tree Genetic Programming

Koch, Michal January 2012 (has links)
This diploma thesis deal with tree genetic programming algorithm. This idea is applied for solving symbolic regression tasks as well designs image filters. At first are introduced a basic concept of genetic programming and reduction of solution space. The next part presents own implementation and achieved results. Result of this work is modular system for making image filters define by specific parameters.
142

Nástroj pro analýzu záznamů o průběhu evoluce číslicového obvodu / A Tool for Analysis of Digital Circuit Evolution Records

Kapusta, Vlastimil January 2015 (has links)
This master thesis describes stochastic optimization algorithms inspired in nature that use population of individuals - evolutionary algorithms. Genetic programming and its variant - cartesian genetic programming is described in a greater detail. This thesis is further focused on the analysis and visualization of digital circuit evolution records. Existing tools for visualization of the circuit evolution were analysed, but because no suitable tool allowing complex analysis of the circuit evolution was found, a new set of functions was proposed and the principles of a new tool were formulated. These functions were implemented in form of an interactive GUI application in Java programming language. The application was described in detail and then used for analysis of digital circuit evolution records.
143

Koevoluční algoritmus pro úlohy založené na testu / Coevolutionary Algorithm for Test-Based Problems

Hulva, Jiří January 2014 (has links)
This thesis deals with the usage of coevolution in the task of symbolic regression. Symbolic regression is used for obtaining mathematical formula which approximates the measured data. It can be executed by genetic programming - a method from the category of evolutionary algorithms that is inspired by natural evolutionary processes. Coevolution works with multiple evolutionary processes that are running simultaneously and influencing each other. This work deals with the design and implementation of the application which performs symbolic regression using coevolution on test-based problems. The test set was generated by a new method, which allows to adjust its size dynamically. Functionality of the application was verified on a set of five test tasks. The results were compared with a coevolution algorithm with a fixed-sized test set. In three cases the new method needed lesser number of generations to find a solution of a desired quality, however, in most cases more data-point evaluations were required.
144

Využití regresních metod pro predikci dopravy / Regession Methods in Traffic Prediction

Vaňák, Tomáš January 2014 (has links)
Master thesis deals with possibilities of predicting traffic situation on the macroscopic level using data, that were recorded using traffic sensors. This sensors could be loop detectors, radar detectors or cameras. The main problem discussed in this thesis is the travel time of cars. A method for travel time prediction was designed and implemented as a part of this thesis. Data from real traffic were used to test the designed method. The first objective of this thesis is to become familiar with the prediction methods that will be used. The main objective is to use the acquired knowledge to design and to implement an aplication that will predict required traffic variables.
145

Koevoluční algoritmus v FPGA / Coevolutionary Algorithm in FPGA

Hrbáček, Radek January 2013 (has links)
This thesis deals with the design of a hardware acceleration unit for digital image filter design using coevolutionary algorithms. The first part introduces reconfigurable logic device technology that the acceleration unit is based on. The theoretical part also briefly characterizes evolutionary and coevolutionary algorithms, their principles and applications. Traditional image filter designs are compared with the biologically inspired design methods. The hardware unit presented in this thesis exploits dual MicroBlaze system extended by custom peripherals to accelerate cartesian genetic programming. The coevolutionary image filter design is accelerated up to 58 times. The hardware platform functionality in the task of impulse noise filter design and edge detector design has been empirically analyzed.
146

Polymorfní obrazové filtry / Polymorphic Image Filters

Salajka, Vojtěch January 2012 (has links)
This thesis deals with the polymorphic image filter design. The study includes polymorphic circuits, their theoretical base and practical applications. It further focuses on the cartesian genetic programming that can be used for an evolutionary design of some types of image filters. The thesis continues with the specification of the evolutionary algorithm to be used for the design of the polymorphic image filters. The implementation of the algorithm is described in two versions -- a standard one running only on a CPU and an accelerated one that partially uses the GPU. Several polymorphic image filters are designed by means of the algorithm.
147

Metoda pro evoluční návrh násobiček využívající development / Evolutionary Design Method of Multipliers Using Development

Kaplan, Tomáš January 2010 (has links)
This work is focused on the techniques for overcoming the problem of scale in the evolutionary design of the combinational multipliers. The approaches to the evolutionary design that work directly with the target solutions are not suitable for the design of the large-scale structures. An approach based on the biological principles of development has often been utilized as a non-trivial genotypephenotype mapping in the evolutionary algorithms that allows us to design scalable structures. The instruction-based developmental approach has been applied to the evolutionary design of generic circuit structures. In this work, three methods are presented for the construction of the combinational multipliers which use a ripple-carry adder for obtaining the final product.
148

Koevoluce v evolučním návrhu obvodů / Coevolution in Evolutionary Circuit Design

Veřmiřovský, Jakub January 2016 (has links)
This thesis deals with evolutionary design of the digital circuits performed by a cartesian genetic programing and optimization by a coevolution. Algorithm coevolves fitness predictors that are optimized for a population of candidate digital circuits. The thesis presents theoretical basis, especially genetic programming, coevolution in genetic programming, design of the digital circuits, and deals with possibilities of the utilization of the coevolution in the combinational circuit design. On the basis of this proposal, the application designing and optimizing logical circuits is implemented. Application functionality is verified in the five test tasks. The comparison between Cartesian genetic programming with and without coevolution is considered. Then logical circuits evolved using cartesian genetic programming with and without coevolution is compared with conventional design methods. Evolution using coevolution has reduced the number of evaluation of circuits during evolution in comparison with standard cartesian genetic programming without coevolution and in some cases is found solution with better parameters (i.e. less logical gates or less delay).
149

Genetické vylepšení software pro kartézské genetické programování / Genetic Improvement of Cartesian Genetic Programming Software

Husa, Jakub January 2016 (has links)
Genetic programming is a nature-inspired method of programming that allows an automated creation and adaptation of programs. For nearly two decades, this method has been able to provide human-comparable results across many fields. This work gives an introduction to the problems of evolutionary algorithms, genetic programming and the way they can be used to improve already existing software. This work then proposes a program able to use these methods to improve an implementation of cartesian genetic programming (CGP). This program is then tested on a CGP implementation created specifically for this project, and its functionality is then verified on other already existing implementations of CGP.
150

A multi-gene symbolic regression approach for predicting LGD : A benchmark comparative study

Tuoremaa, Hanna January 2023 (has links)
Under the Basel accords for measuring regulatory capital requirements, the set of credit risk parameters probability of default (PD), exposure at default (EAD) and loss given default (LGD) are measured with own estimates by the internal rating based approach. The estimated parameters are also the foundation of understanding the actual risk in a banks credit portfolio. The predictive performance of such models are therefore interesting to examine. The credit risk parameter LGD has been seen to give low performance for predictive models and LGD values are generally hard to estimate. The main purpose of this thesis is to analyse the predictive performance of a multi-gene genetic programming approach to symbolic regression compared to three benchmark regression models. The goal of multi-gene symbolic regression is to estimate the underlying relationship in the data through a linear combination of a set of generated mathematical expressions. The benchmark models are Logit Transformed Regression, Beta Regression and Regression Tree. All benchmark models are frequently used in the area. The data used to compare the models is a set of randomly selected, de-identified loans from the portfolios of underlying U.S. residential mortgage-backed securities retrieved from International Finance Research. The conclusion from implementing and comparing the models is that, the credit risk parameter LGD is continued difficult to estimated, the symbolic regression approach did not yield a better predictive ability than the benchmark models and it did not seem to find the underlying relationship in the data. The benchmark models are more user-friendly with easier implementation and they all requires less calculation complexity than symbolic regression.

Page generated in 0.0346 seconds